
Anteater User Manual

for version 0.9.16
April 2003

by Ovidiu Predescu and Jeff Turner

mailto:ovidiu@apache.org
mailto:ovidiu@apache.org
mailto:jefft@apache.org
mailto:jefft@apache.org


Copyright © 2002-2003 Ovidiu Predescu and Jeff Turner. All rights
reserved.

The Anteater manual may be reproduced and distributed in whole or
in part, in any medium, physical or electronic, so long as this
copyright notice remains intact and unchanged on all copies.



1 Introduction 1
2 Getting started 1

2.1 Default properties 4
2.2 Logging 4

3 Grouping 5
3.1 Group Properties 5
3.2 Group Inheritance 5
3.3 The Default Group 6
3.4 Putting it all together 7

3.4.1 Simple grouping 7
3.4.2 Moderate grouping 7
3.4.3 Advanced grouping 7

4 Configuration 8
5 Anteater tags 10

5.1 Tag overview 10
5.1.1 Action tasks 10
5.1.2 Matcher (validator) tasks 10
5.1.3 Structural, configuration and metadata objects 11

5.2 How it works 11
6 Action tasks 12

6.1 httpRequest 12
6.2 soapRequest 15
6.3 fileRequest 18
6.4 listener 19

7 Match task 21
7.1 Conditional logic 22

8 Test tasks 23
8.1 Extracting values from the action result object 23
8.2 header 23
8.3 method 25
8.4 parameter 26
8.5 image 28
8.6 contentEquals 29
8.7 regexp 30
8.8 responseCode 32
8.9 xpath 33
8.10 relaxng 35
8.11 sendResponse 36

9 Webapp tasks 37
9.1 servletContainer 37
9.2 deploy 38

10 Auxiliary tasks 39

Table of Contents



10.1 group 39
10.2 logger 41
10.3 session 43
10.4 namespace 44
10.5 uses 44
10.6 feature 46
10.7 checkuses 46

11 External tasks 47
11.1 foreach 47
11.2 jelly 47

12 Invoking from Ant 48
13 Related projects 49

13.1 Latka 49
13.2 WebTest 50
13.3 PushToTest TestMaker 50

14 Acknowledgements 50

Table of Contents



1 Introduction

Anteater is a testing framework designed around Ant , from the Apache Jakarta Project. It provides an
easy way to write tests for checking the functionality of a Web application or of an XML Web service.

The type of tests you can write using Anteater are:

• Send a HTTP/HTTPS request to a Web server. When the response comes back, test that it meets
certain criteria. You can check for HTTP headers and response codes, and validate the response
body with regexp, XPath, Relax NG, or contentEquals tests, plus some binary formats. New tests
can be easily added.

• Listen for incoming HTTP requests at an given URL on the local machine. When a request
comes on that URL, you can check its parameters and/or content, and send a response
accordingly.

The ability to wait for incoming HTTP messages is something unique to Anteater, which makes it
especially useful when building tests for applications that use high level SOAP-based communication,
like ebXML or BizTalk. Applications written using these protocols usually receive SOAP messages, and
send back a meaningless response. It is only later when they inform the client, using an HTTP request on
the client, about the results of the processing. These are the so-called asynchronous SOAP messages,
and are the heart of many high-level protocols based on SOAP or XML messages.

Here is a simple example written using Anteater:

<target name="simple">
<soapRequest description="Post a simple SOAP request"

href="http://services.xmethods.net:80/soap"
content="test/requests/get-quote">

<namespace prefix="soap" uri="http://schemas.xmlsoap.org/soap/envelope/"/>
<namespace prefix="n" uri="urn:xmethods-delayed-quotes"/>
<match>
<responseCode value="200"/>
<xpath select="/soap:Envelope/soap:Body/n:getQuoteResponse/Result"/>

</match>
</soapRequest>

</target>

Anteater provides XML and text logging support, and the ability to render the logs into HTML reports.

2 Getting started

To start using Anteater, download a binary package for your platform:

http://sourceforge.net/project/showfiles.php?group_id=42970

Install the Anteater package in a directory owned by you with your permissions. In the current release,
Anteater requires write access to the installation directory, as its internal Tomcat servlet container needs
to write various files.

You need to add Anteater's bin/ directory in the PATH:

Anteater User Manual

1

http://jakarta.apache.org
http://sourceforge.net/project/showfiles.php?group_id=42970


$ PATH=/path/to/Anteater/bin:$PATH
$ export PATH

To write your own scripts you need to declare in them the Anteater tasks and types. Here is a simple
skeleton for an Anteater test script:

<?xml version="1.0"?>
<project name="Anteater-testscript" default="main">
<taskdef resource="META-INF/Anteater.tasks"/>
<typedef resource="META-INF/Anteater.types"/>

<target name="mytest">
<echo>
Start writing Anteater tasks here

</echo>
</target>

<target name="main" depends="mytest"/>
</project>

You can name the file however you like it. To run the test script, simply run:

$ anteater -f <your-test-file> [<test target>]

If you have installed everything correctly, you should see something like:

Buildfile: simple.xml

mytest:
[echo]
Start writing Anteater tasks here

main:

BUILD SUCCESSFUL
Total time: 1 second

Here's a complete example, which checks that the Anteater website is online, and that the main page
contains the word Anteater:

<?xml version="1.0"?>

<project name="Anteater-test" default="main">
<taskdef resource="META-INF/Anteater.tasks"/>
<typedef resource="META-INF/Anteater.types"/>

<property name="url" value="http://aft.sourceforge.net/index.html"/>

<target name="check-website">
<echo>Now downloading and testing ${url}</echo>
<httpRequest href="${url}">
<match>
<responseCode value="200"/>
<header name="Content-Type" assign="contenttype"/>
<regexp>Anteater</regexp>

</match>
</httpRequest>
<echo>URL has Content-Type: ${contenttype}</echo>

</target>

<target name="main" depends="check-website"/>

Anteater User Manual

2



</project>

Note the use of Ant Properties, which are very useful for defining reusable bits of text. More
documentation on the various Ant commands is available at http://jakarta.apache.org/ant/manual

Also notice how tests like header can be used to assign properties. In general, any test element can also
double as a way of assigning a value. So for example, <contentEquals assign="filecontents"/>

will capture the contents of a file into variable ${filecontents}.

Here is another example, this time not requiring an external site:

<?xml version="1.0"?>
<project name="Anteater-test" default="main" basedir=".">

<taskdef resource="META-INF/Anteater.tasks"/>
<typedef resource="META-INF/Anteater.types"/>

<target name="init">
<servletContainer port="8100"/>

</target>

<target name="content-check" depends="init">
<echo>Content-check</echo>

<parallel>
<listener path="/good.html">
<match>
<method value="GET"/>
<sendResponse href="test/responses/good.html"
contentType="text/html"
responseCode="301"/>

</match>
</listener>

<sequential>
<sleep seconds="1"/>
<httpRequest path="/good.html">
<match>
<responseCode value="301"/>
<contentEquals href="test/responses/good.html"/>

</match>
</httpRequest>

</sequential>
</parallel>

</target>

<target name="main" depends="content-check"/>

</project>

What is happening here? Well, notice that the first target to be run is init. This contains a
servletContainer task, which starts up a Tomcat server on the specified port (any port above 1024 should
do). Then the content-check target runs, and via the parallel task, starts a listener , as well as an
httpRequest , both in parallel. You guessed it: the httpRequest is going to send a query to the listener.
Anteater is acting as both a HTTP server and client.

Internally, the listener registers with the Tomcat instance to handle requests for path /good.html. The 1
second delay is to give Tomcat a chance to start up. Then the httpRequest task triggers, sending the
request. The listener 's sendResponse task triggers, sending back a HTTP response to the httpRequest ,

Anteater User Manual

3

http://jakarta.apache.org/ant/manual/index.html


which validates it with the contentEquals task. The test assumes there to be a HTML file in
test/responses/good.html, relative to the basedir attribute of the project element.

This pattern of starting a server, registering a listener and then running a test against it is very useful for
testing new scripts. For production use, you will probably want to either test against a live server
(external to Anteater), or use the deploy task to deploy a webapp to the internal Tomcat server, and then
test against that. The deploy task is handy for continuous integration-style, automated (cron-driven)
testing.

2.1 Default properties

Anteater's default behaviour is fully configurable from the command-line or from Ant properties. For
further information on how this is accomplished, check out the Configuration and Grouping sections.

For now, note that one can change the default host, port and debug level by defining the default.host,
default.port and default.debug properties respectively, either by defining properties like this, just
before your first task:

<group id="default">
<property name="debug" value="1"/> <!-- 0 lowest, 10 highest -->
<property name="host" value="mysite.com"/>
<property name="port" value="8080"/>

</group>

You can also use the alternative <property name="default.debug" value="1"/> syntax, or from
the command-line using the -Ddefault.debug=1 argument to the anteater script. Please refer to the
Grouping section for details on what can be customized.

2.2 Logging

Anteater has a pluggable logging system. By default, a text logger logs to the screen. The other main
logger is an XML logger. You can configure Anteater to use the XML logger as well by adding the
following:

<group id="default">
<logger type="xml"/>
<logger type="colour"/>

</group>

Then if you look in the logs/ directory, you'll see some XML files, one per Anteater task. These XML
files are in roughly the same format as those produced by Ant's <unit> task. This is so that we can reuse
Ant's <junitreport> task to style them to HTML. Rather than getting your hands dirty with <unitreport>,
you can invoke Anteater's pre-written reporting target with:

<target name="report" description="Generate a HTML report">
<ant antfile="${anteater.report}">
<property name="log.dir" value="${log.dir}"/>
<property name="report.dir" value="reports"/>

</ant>
</target>

The 'log.dir' property may be omitted, in which case it defaults to 'logs', the same default as the XML
logger uses.

Anteater User Manual

4



An example of what the output looks like can be found at
http://aft.sourceforge.net/example_output/frames/ . A non-frames version is also available.

3 Grouping

Groups are like containers for Anteater objects, allowing reuse of definitions:

<group id="mygroup">
<session/>
<logger type="xml"/>
<property name="host" value="localhost"/>

</group>

<!-- Each member task inherits the group's logger and session -->
<httpRequest group="mygroup" path="/a.html" .. />
<httpRequest group="mygroup" path="/b.html" .. />

If a task (like httpRequest) is part of a group, then it automatically uses whatever objects belong to that
group.

3.1 Group Properties

Anteater tasks' behaviour is configured through properties of the group to which the task belongs.
Currently recognised properties are host, port, debug, timeout, protocol, haltonerror, enable and
usetidy. So if we had:

<group id="cocoontests">
<property name="host" value="myhost.com"/>
<property name="port" value="8080"/>
<property name="debug" value="0"/>

</group>
<httpRequest group="cocoontests" ... />
<httpRequest group="cocoontests" ... />

Then those tasks would run against myhost.com:8080, with debug level 0, unless overridden by
attributes on the httpRequest object. See the Configuration section for more details.

Group properties can also be set from outside a group:

<property name="cocoontests.debug" value="2"/>

This allows group values to be specified in properties files outside the test script, or from the
command-line, eg:

anteater -Dcocoontests.host=localhost -Dcocoontests.debug=2 -f tests.xml

3.2 Group Inheritance

Since a Group object is an Anteater object, a Group can belong to another Group, either by nesting:

<group id="a">
<property name="host" value="myhost.com"/>
<group id="b"/>

</group>

Anteater User Manual

5

http://aft.sourceforge.net/example_output/frames/


or by the inherits attribute (group also works):

<group id="a">
<property name="host" value="myhost.com"/>

</group>
<group id="b" inherits="a"/>

Group elements are inherited in what I hope seems a natural manner. Properties are passed through
unless overridden, so b in the above example has host myhost.com. Loggers are passed through, unless
any loggers are defined in the child group. Same with sessions.

3.3 The Default Group

There is an implicit default group, to which all tasks belong unless otherwise indicated. If the default
group were written out, it would look like this:

<group id="default">
<session/>
<logger type="colour"/>
<property name="host" value="localhost"/>
<property name="debug" value="0"/>
<property name="port" value="BUILTIN,8080"/>
<property name="timeout" value="30s"/>
<property name="protocol" value="HTTP/1.0"/>
<property name="haltonerror" value="false"/>
<property name="usetidy" value="false"/>
<property name="usetidy-server" value="false"/>
<property name="filename-format" value="true"/>
<property name="overwrite" value="true"/>
<property name="enable" value="true"/>

<!-- Declare all other groups as children of 'default' here -->
<group refid=".."/>
...

</group>

So by default, all tasks get a session, and a logger that prints to stdout, plus a bunch of properties used to
configure the default Anteater behaviour.

The default group can be augmented and modified by the user, by declaring a group with id default.
This way, we can override specific properties for all tasks:

<group id='default'>
<property name="host" value="myhost.com"/>
<property name="port" value="8080"/>

</group>

Or add another logger for all tasks:

<group id='default'>
<logger type="xml"/>

</group>

All other items are inherited from the default defaults.

And of course the default group properties can be overridden at the command-line, e.g.
-Ddefault.host=myotherhost.com or -Ddefault.debug=10.

Anteater User Manual

6



3.4 Putting it all together

The purpose of grouping has been to make simple things easier, and complicated things possible. Some
scenarios, from simple to complex:

3.4.1 Simple grouping

With the advent of the default group, most users need never bother with loggers, sessions, groups or
properties. They just rely on the defaults, maybe occasionally overriding them, e.g.
-Ddefault.debug=5.

3.4.2 Moderate grouping

For users for whom the defaults need modifying, that can easily be done by overriding the default

group, and otherwise not touching the script. Want to log to XML as well as the console? Redefine the
default group:

<group id="default">
<logger type="minimal"/>
<logger type="xml" todir="${log.dir}"/>

</group>

3.4.3 Advanced grouping

Users with somewhat large scripts, who want to break it up into sections can do so, by defining a
hierarchy of groups:

<project name="groupdemo" default="main">
<taskdef resource="META-INF/Anteater.tasks"/>
<typedef resource="META-INF/Anteater.types"/>

<group id="mytests">
<property name="debug" value="0"/>

</group>
<group id="livesite" inherits="mytests">
<property name="host" value="www.mysite.com"/>
<logger type="xml" todir="{docs.dir}"/> <!--
HTML report -->

</group>
<group id="devsite" inherits="mytests">
<property name="host" value="www.mysite-dev.com"/>
<property name="debug" value="1"/> <!-- devsite a bit unstable -->
<property name="failonerror" value="true"/> <!-- Don't waste time testing whole

site -->

<group id="devsite-brokenbit"> <!-- Very broken bit of devsite -->
<property name="debug" value="10"/> </group>

</group>

<target name="main">
<!-- Will have debug=10, host=www.mysite-dev.com, failonerror=true, and log
to the console -->
<httpRequest group="devsite-brokenbit" path="/broken.html"/>

</target>
</project>

Anteater User Manual

7



So we define a hierarchy of groups at the top of the script, and then use it in the subsequent tests.

4 Configuration

Anteater is configured through a set of properties. Properties belong to groups, and are named as such.
Thus, default.debug is the debug property in the default group. If you have yet to read the Grouping
section, now would be a good time to do so. The main thing to remember is that all tasks and groups
belong to the default group, unless explicitly overridden, and thus properties in the default group will
be inherited in subsequent groups unless overridden.

Currently defined default properties are:

Property name Type Default value Description

default.host String localhost Set the default host for httpRequest or soapRe-
quest requests.

default.port Integer BUILTIN,808

0

Set the default port to use. The preceding
BUILTIN means use the servletcontainer de-
fault, and if not available, fall back to the indi-
cated port.

default.debug Integer 0 Default debug level. 0 is lowest, 10 highest.
The higher the debug level, the greater the
number of information being logged.

default.session boolean true Whether the default group defines a session
element.

default.timeout Integer 30s How long the client-side action tasks should
wait before assuming a server is dead. If the
request times out it is consider to have failed.

protocol String HTTP/1.0 HTTP protocol to connect as. If virtual hosts
are used, must be HTTP/1.1.

default.haltonerror boolean true Whether a failed action task halts the Anteater
test script.

default.usetidy boolean false Whether to apply JTidy on the result obtained
by action tasks (like httpRequest or soapRe-
quest ) to clean up mark-up text and transform
it in valid XML.

To be able to apply matchers such as xpath in
your tests, the content to be matched must be
valid XML. If you know the response is an
HTML document which is not valid XML,
you should set this flag to true to be able to
use xpath on it.

One caveat with transforming HTML into
XML is that the structure of your document
might change. In order to correctly apply

Anteater User Manual

8

http://lempinen.net/sami/jtidy/


Property name Type Default value Description

XPath on the resulting document, you need to
inspect the result manually. Anteater tries to
anticipate JTidy's changes by automatically
setting the 'ignoreSpaces' and 'singleLine' at-
tributes of xpath and regexp to true.

default.usetidy-server boolean false Whether to apply JTidy on the content body
received in a request by the listener task. This
is very similar with the effect of de-

fault.useTidy, except that its action happens
on the incoming requests, rather than on the
result obtained by action tasks.

default.filename-format String (see de-

scription)

Flag specifying the default filename format for
log files. Default value is TEST-

${groupid}_${taskname}_${url}_line-${

lineno}_test-${vm-count}${_run-:run}.

xml

Pretty much any property can be used, both
Anteater-specific properties (e.g. the task's
description), Group properties, and Ant
<property> properties.

There is one quirk in the format: variables of
the form ${prefix:variable}. These are in-
terpreted as follows: if ${variable} is de-
fined, and has value value, then
${prefix:variable} is replaced with
'prefixvalue'. For example, ${run_:run} be-
comes 'run_1', or ${run at :date} becomes
'run at 10/3/03'. If variable is undefined, the
variable is replaced with ''. This hackery is pri-
marily for the 'run' variable, which won't exist
if overwrite is true (see below).

default.overwrite boolean true Flag indicating whether, by default, we should
overwrite log files from previous Anteater
runs.

If false, log files are made unique with a runX

filename suffix, where X is incremented to en-
sure a unique filename.

default.enable boolean true This flag indicates whether member tasks will
be run or not.

For example, one might classify action tasks
into 'normal' and 'strict' groups, and then at
runtime, choose to disable one or the other
group, eg -Dstrict.enable=false to turn

Anteater User Manual

9

http://lempinen.net/sami/jtidy/


Property name Type Default value Description

off the 'strict' group's tasks.

5 Anteater tags

Since Anteater is based on Ant , understanding of the latter is helpful in understanding how Anteater
works. Anteater extends Ant by supplying its own set of tasks, which have no equivalent in Ant.

5.1 Tag overview

Anteater extends Ant with a number of new tags: HTTP "action" tasks, "matcher" tasks for checking
returned content, plus structural, configuration and metadata tags.

5.1.1 Action tasks

These are tasks that perform some testing operation. httpRequest and soapRequest issue HTTP requests,
and invoke matcher tasks to perform matching (validating) on the HTTP response they get back. The
listener task does the opposite. It waits for a HTTP request, invokes its matchers to perform matching on
it, and then sends back a HTTP response. fileRequest is the same as httpRequest, but it tests files on the
local filesystem, making it useful for prototyping tests.

5.1.2 Matcher (validator) tasks

These tasks check that the result of test operations "matches" some criterion. HTTP-related matchers
include:

parameter
Checks for a HTTP parameter, eg in a query string (?foo=bar)

header
Checks for a HTTP header, like a Content-Type.

responseCode
Checks for a response code, eg 200 (OK)

method
Checks for a HTTP method (GET or POST).

These HTTP matchers also double as property setters, and when arranged with match tags, allow basic
flow control.

The general content-checking matchers are:

regexp
Check HTTP body with a regular expression

contentEquals
Check HTTP body for specific contents

image
Checks if the HTTP body contains an image of specified type

There are also some XML-specific matchers:

Anteater User Manual

10

http://jakarta.apache.org
http://jakarta.apache.org


xpath
Check that an XPath expression is true in the returned XML

relaxng
Validate returned XML against a Relax NG schema

5.1.3 Structural, configuration and metadata objects

Everything that isn't an action task or a matcher is lumped in this category.

Configuration objects include: logger s (log testing actions), session s (client-side statefulness), and
namespace s (for namespace-aware matchers). Loggers are usually used in conjunction with group s.
Sessions are used in advanced scenarios when you want to override the default session.

The main structural task is match , which lets one group matcher tests. The group element is the core of
the Grouping system, which becomes important when structuring larger scripts. In the future, there will
be test metadata objects like testdescription, specref

5.2 How it works

Each action task can contain one or more match tasks. An action task corresponds to a particular
message you expect to receive from a Web service or client.

The match tasks associated with an action task describe the HTTP message you expect to receive. A
match task is considered to be successful if all the associated matcher tests succeed. If one test fails, the
match task that contains it is fails.

If multiple match tasks are specified for an action task, each match task is executed in turn, until one of
them succeeds, at which point the matching process stops. If a match task succeeds, the action task that
contains it succeeds. If none of the match tasks succeed, the action task is considered to fail, and it will
be reported as such. In other words, if we had:

<httpRequest path="/foo.xml">
<match>
<A ../>
<B ../>

</match>
<match>
<C ../>
<D ../>
<E ../>

</match>

Then the httpRequest task would succeed if A and B succeeded, or if C, D and E all succeeded. In
boolean logic, this is (A and B) or (C and D and E).

Anteater implements a 'shortcut boolean evaluation' policy. As soon as a <match> succeeds, the action
task concludes. Likewise, as soon as a matcher test fails (eg <C ../>, none of the others (D, E) are
processed.

If no match tasks are specified for an action task, the action task is considered successful as soon as it
finishes. An action task that sends an HTTP request is considered finished as soon as the response is
read from the Web server. An action task that listens for an incoming request is considered successful as

Anteater User Manual

11

http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html


soon as a request is received on the listening URL and the response is sent back to the client.

Let's consider the following simple example:

<target name="simple">
<soapRequest
description="Post a simple SOAP request">
href="http://services.xmethods.net:80/soap"
content="test/requests/get-quote">
<namespace prefix="soap" uri="http://schemas.xmlsoap.org/soap/envelope/"/>
<namespace prefix="n" uri="urn:xmethods-delayed-quotes"/>
<match>
<responseCode value="200"/>
<xpath select="/soap:Envelope/soap:Body/n:getQuoteResponse/Result"/>

</match>
</soapRequest>

</target>

In this example we can identify the following Anteater tasks:

• soapRequest : the action task

• namespace : namespace declaration

• match : the match task

• responseCode and xpath : the test tasks

6 Action tasks

These tasks are used to make HTTP requests to a Web or SOAP server, or to wait for incoming HTTP
requests on a local URL. A test uses these tasks to interact with the server or to receive incoming
requests from Web or SOAP clients.

Care should be taken if the client and the server machines are separated by a firewall. Anteater allows
firewall traversal using HTTP proxies. To setup firewall traversal, use the JVM http.proxyHost and
http.proxyPort properties on the client side, for the HTTP request to work across the firewall. This
can be done by setting up the ANTEATER_OPTS environment variable like this:

$ ANTEATER_OPTS='-Dhttp.proxyHost=<host> -Dhttp.proxyPort=<port>
$ export ANTEATER_OPTS

The current Anteater action tasks are:

• httpRequest

• soapRequest

• fileRequest

• listener

6.1 httpRequest

This task makes an HTTP request to a server, and waits for the result. Upon receiving the message, it
applies the match tasks specified within it on the HTTP response obtained. If at least one match task

Anteater User Manual

12



succeeds, the request is consider successful.
Attributes
Attribute name Type Default value Description

description String A text description of what the httpRequest achieves. This
will be used in reporting.

host String localhost The name of the host to which the request is to be sent.

port integer 8080 The port number of the Web server to which the request
is to be sent.

timeout String 30s The socket timeout. This determines how long Anteater
waits for a non-responding HTTP service before abort-
ing. The suffixes ms, s and m indicate milliseconds, sec-
onds and minutes. Fractions of seconds and minutes can
be used, so 1.5 s means 1500 ms. A zero or negative
number will set an infinite timeout.

path String The path of the HTTP request, including any additional
GET parameters.

user String The user name to be used with basic authentication. If no
user is specified, no authentication is used.

password String The password to be used with basic authentication.

href String The URL of the Web server to which to send the request.
Use either a combination of the host and port attributes,
or the href attribute, to specify where the server is run-
ning. The host, port and path attributes are most com-
monly used when sending requests to the local host.

When you send a request to the local host, you can also
ignore the host attribute, as the default value is local-

host.

method String GET The HTTP request type ('GET' or 'POST'). This can also
be specified as a nested method element.

content String An URL of a resource whose content is to be sent to the
Web server. If you don't specify any protocol, the as-
sumed protocol is file:. If the file doesn't start with a /,
it is assumed to be relative to the directory where
Anteater was started from.

The URL of the resource can be remote, e.g. you can
specify the content to be http://www.acme.com/.
Anteater will fetch the remote resource and pass it to the
Web server specified by the httpRequest element.

The content can also be specified by a nested contentE-
quals element.

protocol String HTTP/1.0 The HTTP protocol to be used.

debug Integer Debug level for messages. Use a debug level greater than

Anteater User Manual

13



Attribute name Type Default value Description

0 to get meaningful information on what's going on over
the wire.

useTidy boolean false Whether JTidy should be applied on the response ob-
tained from the server to XML-ize the generated HTML.

followRedirects boolean false Whether, if the HTTP request returns a 302 client-side
redirect message, Anteater should automatically issue
another HTTP request to the redirected-to URL and re-
turn that response.

This is useful in many scenarios, eg where a login page
automatically redirects a logged-in client to another
page.

Elements allowed inside httpRequest

Element name Description

header HTTP header to be passed in the HTTP request sent to the server.

parameter Specifies an additional GET or POST parameter to be passed in the
HTTP request to the server.

method Specifies whether to do a HTTP GET or POST operation. Overrides the
'method' attribute.

contentEquals Specifies the HTTP body contents to send, probably as a HTTP POST
operation. The Content-Length header will be automatically computed
and added. This element overrides the 'content' attribute.

match Specifies a set of rules to be used to match the HTTP response against.

You can specify multiple match elements as children of an httpRequest or
soapRequest element. If all the tests inside the match element succeed,
the matching is considered successful and the action succeeds, otherwise
the action fails.

namespace Assigns a namespace mapping, from prefix to URI. This mapping will be
used in any XML-aware testers defined in this action task.

logger Used to specify a logger for this HTTP operation. Often this will be a ref-
erence, eg <logger refid="mylogger"/>. It is usually preferable to set
a logger in a group , than directly on action tasks.

session Used to specify a session for this HTTP operation. This is useful when
one specifically doesn't want to use the default session, or wants to run a
few HTTP operations with a completely separate session. Often this will
be a reference, eg <session refid="mylogger"/>. It is usually prefer-
able to set a session in a group , than directly on action tasks.

uses If this action task requires an Anteater optional feature (eg a new XSD or
RNG schema), then this tag can be used to declare the dependency. The
task will check if the requirement is satisfied, and print a helpful message
if it isn't.

Anteater User Manual

14

http://lempinen.net/sami/jtidy/


Element name Description

Note that 'uses' tags from the action task's groups are also evaluated when
the action task is run.

Examples

Send an HTTP GET request to http://localhost:8080/:

<httpRequest/>

Equivalent to an HTTP GET request to http://localhost/:

<httpRequest port="80"/>

Equivalent to an HTTP POST request to http://localhost:8080/servlets/example passing the
content of /etc/passwd to the Web server:

<httpRequest path="/servlets/example" method="POST" content="/etc/passwd"/>

6.2 soapRequest

Sends a SOAP request to a SOAP server. This is equivalent to the httpRequest task, but with the
following additions:

• an additional SOAPAction header set to "" is passed in the request.

• the method is set to POST

• the Content-type header is set to text/xml.

Attributes
Attribute name Type Default value Description

description String A text description of what the httpRequest achieves. This
will be used in reporting.

host String localhost The name of the host to which the request is to be sent.

port integer 8080 The port number of the Web server to which the request
is to be sent.

timeout String 30s The socket timeout. This determines how long Anteater
waits for a non-responding HTTP service before abort-
ing. The suffixes ms, s and m indicate milliseconds, sec-
onds and minutes. Fractions of seconds and minutes can
be used, so 1.5 s means 1500 ms. A zero or negative
number will set an infinite timeout.

path String The path of the HTTP request, including any additional
GET parameters.

user String The user name to be used with basic authentication. If no
user is specified, no authentication is used.

password String The password to be used with basic authentication.

Anteater User Manual

15



Attribute name Type Default value Description

href String The URL of the Web server to which to send the request.
Use either a combination of the host and port attributes,
or the href attribute, to specify where the server is run-
ning. The host, port and path attributes are most com-
monly used when sending requests to the local host.

When you send a request to the local host, you can also
ignore the host attribute, as the default value is local-

host.

method String GET The HTTP request type ('GET' or 'POST'). This can also
be specified as a nested method element.

content String An URL of a resource whose content is to be sent to the
Web server. If you don't specify any protocol, the as-
sumed protocol is file:. If the file doesn't start with a /,
it is assumed to be relative to the directory where
Anteater was started from.

The URL of the resource can be remote, e.g. you can
specify the content to be http://www.acme.com/.
Anteater will fetch the remote resource and pass it to the
Web server specified by the httpRequest element.

The content can also be specified by a nested contentE-
quals element.

protocol String HTTP/1.0 The HTTP protocol to be used.

debug Integer Debug level for messages. Use a debug level greater than
0 to get meaningful information on what's going on over
the wire.

followRedirects boolean false Whether, if the HTTP request returns a 302 client-side
redirect message, Anteater should automatically issue
another HTTP request to the redirected-to URL and re-
turn that response.

This is useful in many scenarios, eg where a login page
automatically redirects a logged-in client to another
page.

useTidy boolean false Whether JTidy should be applied on the response ob-
tained from the server. Since we send a SOAP request,
we expect to receive back a SOAP message, so there's
little reason to XML-ize this content. Set this attribute to
true if the server returns broken HTML instead of SOAP.

Elements allowed inside soapRequest

Element name Description

header HTTP header to be passed in the HTTP request sent to the server.

Anteater User Manual

16

http://lempinen.net/sami/jtidy/


Element name Description

parameter Specifies an additional GET or POST parameter to be passed in the
HTTP request to the server.

method Specifies whether to do a HTTP GET or POST operation. Overrides the
'method' attribute.

contentEquals Specifies the HTTP body contents to send, probably as a HTTP POST
operation. The Content-Length header will be automatically computed
and added. This element overrides the 'content' attribute.

match Specifies a set of rules to be used to match the HTTP response against.

You can specify multiple match elements as children of an httpRequest or
soapRequest element. If all the tests inside the match element succeed,
the matching is considered successful and the action succeeds, otherwise
the action fails.

namespace Assigns a namespace mapping, from prefix to URI. This mapping will be
used in any XML-aware testers defined in this action task.

logger Used to specify a logger for this HTTP operation. Often this will be a ref-
erence, eg <logger refid="mylogger"/>. It is usually preferable to set
a logger in a group , than directly on action tasks.

session Used to specify a session for this HTTP operation. This is useful when
one specifically doesn't want to use the default session, or wants to run a
few HTTP operations with a completely separate session. Often this will
be a reference, eg <session refid="mylogger"/>. It is usually prefer-
able to set a session in a group , than directly on action tasks.

uses If this action task requires an Anteater optional feature (eg a new XSD or
RNG schema), then this tag can be used to declare the dependency. The
task will check if the requirement is satisfied, and print a helpful message
if it isn't.

Note that 'uses' tags from the action task's groups are also evaluated when
the action task is run.

Examples

This example demonstrates how a listener's match tasks and testers can be arranged to implement
if/then/else logic.

The incoming request can be a SOAP message containing either an receipt acknowledge message or a
SOAP fault message, indicating an error.

<listener path="/receipt">
<match method="POST">
<xpath select="/soap:Envelope/soap:Body/receipt-ack"/>
<xpath select="/soap:Envelope/soap:Body/response-to" assign="replyHref"/>
<sendResponse href="${replyHref}/>

</match>
<match assign="failed">
<matchBody select="/soap:Envelope/soap:Body/rfq"/>
<matchMethod code="POST"/>

Anteater User Manual

17



</match>
</listener>

6.3 fileRequest

This task is the same as httpRequest , but tests against a local file instead of doing a HTTP request.
Attributes
Attribute name Type Default value Description

description String A text description of what the httpRequest achieves. This
will be used in reporting.

path String The path of the local file to test, relative to the Anteater
script's basedir

debug Integer Debug level for messages. Use a debug level greater than
0 to get meaningful information on what's going on over
the wire.

Elements allowed inside fileRequest

Element name Description

match Specifies a set of rules to be used to match the HTTP response against.

You can specify multiple match elements as children of an httpRequest ,
soapRequest or fileRequest element. If all the tests inside the match ele-
ment succeed, the matching is considered successful and the action suc-
ceeds, otherwise the action fails.

namespace Assigns a namespace mapping, from prefix to URI. This mapping will be
used in any XML-aware testers defined in this action task.

logger Used to specify a logger for this HTTP operation. Often this will be a ref-
erence, eg <logger refid="mylogger"/>. It is usually preferable to set
a logger in a group , than directly on action tasks.

uses If this action task requires an Anteater optional feature (eg a new XSD or
RNG schema), then this tag can be used to declare the dependency. The
task will check if the requirement is satisfied, and print a helpful message
if it isn't.

Note that 'uses' tags from the action task's groups are also evaluated when
the action task is run.

Examples

Reads a local file, resources/responses/text.txt, and checks that its contents (ignoring whitespace)
is a certain value.

<fileRequest path="resources/responses/text.txt"
description="tests a text file">

<match>
<contentEquals ignoreSpaces="true">

Anteater User Manual

18



Here is some freeform text saved with DOS linefeeds.
</contentEquals>

</match>
</fileRequest>

6.4 listener

In addition to sending out HTTP requests to Web and SOAP servers, Anteater has the ability to receive
incoming HTTP requests. This ability is very useful when you want to implement high level SOAP and
XML protocols, like ebXML or BizTalk, which make use of asynchronous SOAP messages to exchange
information between parties.

Applications implementing such protocols will accept an HTTP request as a high level asynchronous
request. The response to such a request is not usually meaningful. Instead, the server will later generate a
reply as another HTTP request to an URL specified by the client in the original message.

In such applications, the client and server role changes depending on the phase of the conversation. To
be able to test such applications, a party in such a conversation should be able to act both as a client and
as a server.

The listener element tells Anteater to stop the processing of the test script, until a request at a specified
URL is received. Anteater will act exactly like an HTTP or SOAP server, by listening on the local host
on a specified port, waiting for a request on a given URI path you can specify.

To use the listener task, the servlet container within Anteater should first be started. This is done by
using the servletContainer task, which allows specifying which are the ports Anteater will listen on
when acting as an HTTP server.

In the next example, a request is sent to a SOAP server, and then a response is awaited on the local host
at the /receiptAck path URI. If the name of the machine which runs this Anteater snippet is
soap.acme.com, the remove SOAP server would then need to send an HTTP request back to
http://soap.acme.com:8080/receiptAck for the listener task to be unblocked and the Anteater
script's execution to continue:

<target name="test">
<soapRequest href="http://some.remote.server/"

content="some/file"/>

<listener port="8080" path="/receiptAck" timeout="7200">
<namespace prefix="soap" uri="http://schemas.xmlsoap.org/soap/envelope/"/>
<match>
<method value="POST"/>
<xpath select="/soap:Envelope/soap:Body/receipt-ack"/>
<sendResponse href="responses/response.xml"

contentType="text/xml"/>
</match>

</listener>
</target>

In the above example, if no request is received within 7200 seconds from the start of the listening, the
listener task will fail. If a response is received within this time, the incoming request should be an HTTP
POST request, and should contain in the body a SOAP message with a receipt-ack element, for the
listener task to succeed. If such a request is received, a response is sent back with the content a local file,
using the sendResponse task.

Anteater User Manual

19



If there's no match task that matches the incoming request, a response may not be generated using
sendResponse . In such a case, Anteater will automatically generate a 200 OK response, with no content
in the body, and the enclosing listener element fails. Sending the response ensures the client application
obtains a response back, and doesn't block it indefinitely. Future versions of Anteater will allow for the
customization of such responses.

For any incoming requests, for which there's no listener task waiting, the response sent back by Anteater
is a 404 Not Found.
Attributes
Attribute name Type Default value Description

path String Defines the URI path where an HTTP request should be
received on. Requests received on other URI paths will
have a 404 Not Found response returned, unless other
listeners are setup for them.

port integer The first port defined by the port attribute of servlet-
Container . See a description of this element for more in-
formation.

timeout integer 0 How long in seconds the listener task should wait for an
incoming request. If no request is received before the
time expires, the listener task fails. A value of 0 specifies
an indefinite timeout, so the listener task will wait for-
ever for a request to come.

useTidy boolean false Whether JTidy should be applied on the incoming re-
quest body, before running the matcher tests on it.

Elements allowed inside listener

Element name Description

match Match on the incoming request.

namespace Assigns a namespace mapping, from prefix to URI. This mapping will be
used in namespace-aware tasks like xpath .

logger Used to specify a logger for this HTTP operation. Often this will be a ref-
erence, eg <logger refid="mylogger"/>. It is usually preferable to set
a logger in a group , than directly on action tasks.

session Used to specify a session for this HTTP operation. This is useful when
one specifically doesn't want to use the default session, or wants to run a
few HTTP operations with a completely separate session. Often this will
be a reference, eg <session refid="mylogger"/>. It is usually prefer-
able to set a session in a group , than directly on action tasks.

Examples

This example demonstrates how a listener's match tasks and testers can be arranged to implement
if/then/else logic.

The incoming request can be a SOAP message containing either an receipt acknowledge message or a

Anteater User Manual

20

http://lempinen.net/sami/jtidy/


SOAP fault message, indicating an error.

<listener path="/receipt">
<match method="POST">
<xpath select="/soap:Envelope/soap:Body/receipt-ack"/>
<xpath select="/soap:Envelope/soap:Body/response-to" assign="replyHref"/>
<sendResponse href="${replyHref}/>

</match>
<match assign="failed">
<matchBody select="/soap:Envelope/soap:Body/rfq"/>
<matchMethod code="POST"/>

</match>
</listener>

7 Match task

The result of an action task is an HTTP response or request object. Anteater allows you to test various
characteristics of this object using match and test tasks.

A match task groups multiple tests that need to be performed on the result of an action task. All the tests
inside the match task need to be successful in order for the match task to be successful.

An action task can have multiple match tasks that can be checked against the result object. These tasks
will be executed in order until one of them succeeds, after which the result of the action task is
considered to be successful. If none of the tasks succeed, the action task simply fails.

Since the match tasks are executed in the order in which they appear inside the action element, it is
important to consider the tests that have side-effects, like assigning results to Ant properties.

<soapRequest description="Send a SOAP request"
href="${url}" content="filename">
<match>
...

</match>

<match>
...

</match>

<!-- Other match tasks here -->
...

</soapRequest>

<!-- Other Anteater action tasks here -->

In the above example, after the SOAP request returns the SOAP result object, the match tasks will be
executed in order. If the first match task succeeds, the matching stops here, and the soapRequest task is
successful. Otherwise, the next match tasks are executed, until one succeeds. If none of them succeeds,
the soapRequest task fails. Depending on the value of the haltonerror property inherited from task's
group , the subsequent action tasks inside it may or may not be executed.

Attributes
Attribute name Type Default value Description

assign String Specifies the name of a property to set if the match task's
testers all succeed. In a listener task, this would be the

Anteater User Manual

21



Attribute name Type Default value Description

match task responsible for sending the content. This al-
lows script writers to apply conditional logic based on
which match succeeded.

value String Specifies the value to set the assign property if the
match task's testers all succeed.

Elements allowed inside match : all Test tasks .

7.1 Conditional logic

As noted in the Anteater_tags section, match tasks can be used as a form of boolean logic. Each match

block contains a set of AND'ed tests (they must all pass), and as any match block's success renders the
action task successful, they are effectively OR'ed together. Thus the task:

<httpRequest path="/foo.xml">
<match>
<A ../>
<B ../>

</match>
<match>
<C ../>
<D ../>
<E ../>

</match>

implements the boolean logic (A and B) or (C and D and E).

This can be exploited in various interesting ways. Here is how a listener can deliver different responses
based on the value of a parameter:

<listener path="/foo">
<match assign="chose123">
<method value="GET"/>
<parameter name="a" value="123"/>
<sendResponse href="test/responses/good.html" contentType="text/html"/>

</match>
<match assign="chose456">
<method value="GET"/>
<parameter name="a" value="456"/>
<sendResponse href="test/responses/bad.html" contentType="text/html"/>

</match>
</listener>

Here is a larger example of how one can determine the type of server being tested, by using the 'assign'
attribute on matchers:

<httpRequest path="/">
<match assign="servertype" value="gnu-apache">
<header name="Server" value="Apache/1.3.24 (Unix) Debian GNU/Linux"/>

</match>
<match assign="servertype" value="generic-apache">
<header name="Server" assign="apache-version" pattern="Apache/([\d.]+)"/>

</match>
<match assign="servertype" value="IIS6">
<header name="Server" value="Microsoft-IIS/6.0"/>

</match>
<match assign="servertype" value="generic-IIS">

Anteater User Manual

22



<header name="Server" pattern="IIS"/>
</match>
<match assign="servertype" value="unknown">
</match>

</httpRequest>
<echo>servertype is ${servertype}</echo>

8 Test tasks

The object an action task generates is either an HTTP response in the case of httpRequest or
soapRequest , or an HTTP request, in the case of listener . To test characteristics of such objects, test
tasks are used inside an match task.

A match task contains a set of tests to be performed on an action's object, be it an HTTP response or
request object. All the test tasks specified associated with a match task must succeed in order for the
match task to succeed.

The test tasks are tested in the order they appear inside the match task. If some of the test tasks produce
side-effects, like setting a global Ant property, then you should consider carefully the order in which
they are executed.

8.1 Extracting values from the action result object

The value a test task checks for can be assigned to an Ant property using the assign attribute. Such
properties can be later referred to in Anteater and normal Ant tasks.

<soapRequest href="${url}"
content="test/requests/get-quote">

<match>
<header name="Content-Length" assign="cl"/>
<responseCode value="200" assign="rc"/>
<xpath select="soap:Envelope/soap:Body/n:getQuoteResponse/Result"

assign="result"/>
<echo>XPath-selected the value '${result}'</echo>

</match>
</soapRequest>

A major difference between Anteater and Ant is that properties can be assigned values multiple times, so
you can reuse the same property across the test script. Properties assigned through the assign attribute
can also be used immediately after their definition.

8.2 header

This task is used for multiple purposes:

• to set an HTTP header when sending an HTTP or SOAP request.

• to test the value of an HTTP header in the response obtained by httpRequest or soapRequest .

• to test the value of an HTTP request header in a request received by listener .

When used to set an additional HTTP header in an HTTP request, the header task should be a child of
the action task, either an httpRequest or a soapRequest task. In such a usage, the header task is not

Anteater User Manual

23



really used as a test task; we nevertheless chose to use the same name for the task to keep things simple.

If the task is used to test the value of a header in either an HTTP response or an HTTP request, it should
appear as any other test task directly as a child of the match element. See the samples below for an
example of how the header task is used.

The header element can take nested body text, which will be stripped of preceding and trailing
whitespace, and used as the header value, overriding the 'value' attribute. A nested jelly element can also
be specified to dynamically generate the header value.
Attributes
Attribute name Type Default value Description

name String The name of the header to be added in the HTTP request,
or the name of the header to be tested.

value String If the task is used for setting headers in an outgoing re-
quest, this attribute contains the value of the header.

If the header task is used to test the value of an HTTP
response or request, the presence of this attribute indi-
cates that an exact match is expected. If the HTTP
header specified by name doesn't have this exact value,
the header test task will fail.

pattern String Sets a regular expression with which to match the speci-
fied HTTP header in a response document. This should
only be used when the element is being used as a
matcher.

If the pattern contains a group, (...), then the matched
value, if any, is placed in the assign property.

assign String Meaningful only when the header task is used for testing
an HTTP header.

When this attribute is specified, the property named by it
will contain the value of the header, upon the successful
test of the header. A successful test can happen only if
the HTTP header exists and, if the value attribute was
specified, its value equals the one specified for the HTTP
header. Otherwise the property will not be assigned to.

Elements allowed inside header: none

Examples

The following HTTP request sets the value of the Content-type header to text/html:

<httpRequest href="${url}">
<header name="Content-type" value="text/html"/>
<match>
...

Anteater User Manual

24



</match>
</httpRequest>

Test whether the Content-type header value returned by an HTTP request is set to text/html:

<httpRequest href="${url}">
<match>
<header name="Content-type" value="text/html"/>

</match>
</httpRequest>

Assign the value of the Content-type header to an Anteater property:

<httpRequest href="${url}">
<match>
<header name="Content-type" assign="type"/>
<echo>Content-type of the response is ${type}</echo>

</match>
</httpRequest>

Test whether the Content-type header value received in an incoming HTTP request is any sort of text
response, and store that type in a variable:

<httpRequest path="/good.html">
<match assign="type" value="text">
<header name="Content-Type" assign="texttype" pattern="text/(.*)"/>

</match>
<match assign="type" value="image">
<header name="Content-Type" pattern="image/.*"/>

</match>
</httpRequest>

8.3 method

This task is used to:

• Set the HTTP method (typically GET or POST) of a HTTP request to send to a server.

• test the HTTP method of an incoming HTTP request accepted by the listener .

Value can be specified as inline text, possibly dynamically generated.
Attributes
Attribute name Type Default value Description

value String The value of the method to check for. If this attribute is
present, the specified method will be compared against
the actual method in the request: if they don't match, this
test fails, otherwise it succeeds. If this attribute is not
present, any HTTP method is accepted for the incoming
request.

This can also be specified as nested text, or generated
dynamically by a nested jelly element.

assign String Assigns the actual value of the request's method to an
Anteater property.

Anteater User Manual

25



Elements allowed inside method

Element name Description

jelly Specify a Jelly script, which will dynamically generate a string selecting
the HTTP method (GET, POST, HEAD etc).

Examples

Generates a POST request.

<httpRequest path="/text.txt">
<method>
POST

</method>
<contentEquals>Posted contents</contentEquals>
<match>
...

</match>
</httpRequest>

This example tests if the incoming request is a GET request:

<listener path="/abc">
<match>
<method value="GET"/>
...

</match>
</listener>

Accept an incoming request, no matter what is the method, and assign the method type to the mth

Anteater property:

<listener path="/abc">
<match>
<method assign="mth"/>
<echo>Received a ${mth} request</echo>

</match>
</listener>

8.4 parameter

As with the header task, the parameter task is used for multiple purposes:

• to define an additional parameter that should be passed in an outgoing HTTP request when using
the httpRequest or soapRequest tasks.

• to test the value of a parameter in an incoming HTTP request accepted by the listener task.

The parameter value may be specified as (dynamically generated) nested text.
Attributes
Attribute name Type Default value Description

name String The name of the parameter to be passed in the HTTP re-
quest when using httpRequest or soapRequest , or to be
tested for in the request received by listener .

Anteater User Manual

26



Attribute name Type Default value Description

value String The value of the parameter to be sent in the HTTP re-
quest using httpRequest or soapRequest , or the expected
value of the parameter when using the listener task.

type String Meaningful only when sending out parameters.

Specifies how the parameter should be passed in the
HTTP request, possible values being GET or POST. GET
parameters are encoded in the HTTP URL, while POST

parameters are passed in the body of the request as head-
ers.

Usually this attribute is not used, as Anteater will do the
proper thing and pass the parameter according to the re-
quest type. However you may want to test a particular
behavior of the HTTP or SOAP server, and pass parame-
ters in a different way than they are expected.

E.g. you may pass a GET parameter as a POST parameter
and vice-versa.

assign String Set the named Anteater property to the value of the ac-
tual HTTP request parameter.

Elements allowed inside parameter

Element name Description

jelly Specify a Jelly script, which will dynamically generate the parameter
value.

Examples

Set a parameter in an outgoing HTTP request:

<httpRequest href="${url}">
<parameter name="a" value="123"/>
<match>
...

</match>
</httpRequest>

Test if the a parameter is present in the request, and assign its value to the paramA Anteater property:

<listener path="/abc">
<match>
<parameter name="a" assign="paramA"/>
...

</match>
</listener>

Return a different response based on a parameter value.

<listener path="/abc" description="wait for an incoming request">

Anteater User Manual

27



<match>
<parameter name="a" value="123"/>
<sendResponse href="resources/responses/good.html"
contenttype="text/html"/>

</match>

<match>
<parameter name="a" value="456"/>
<sendResponse href="resources/responses/bad.html"
contenttype="text/html"/>

</match>
</listener>

8.5 image

This task tests if the HTTP body contains binary image data.

Only a few representative bytes are tested, so some corrupt images may slip through. The type of image
my be specified either as a MIME type or as a file extension.
Attributes
Attribute name Type Default value Description

mimetype String MIME type indicating what form we expect the data to
follow. The following types are supported:

• application/x-shockwave-flash

• image/bmp

• image/gif

• image/iff

• image/jpeg

• image/pcx

• image/png

• image/psd

• image/ras

• image/x-portable-bitmap

• image/x-portable-graymap

• image/x-portable-pixmap

extension String Indicates the type of content we're expecting by the com-
mon file extension. Useful for types like 'application/
x-shockwave-flash' which is much harder to remember
than 'swf'. Supported extensions are:

• jpg or jpeg

• gif

• png

Anteater User Manual

28



Attribute name Type Default value Description

• bmp

• pcx

• iff

• ras

• psd

• swf

Elements allowed inside image: none

Examples

Here's a simple example of validating a gif image

<httpRequest href="http://jakarta.apache.org/images/jakarta-logo.gif">
<match>
<image mimetype="image/gif"/>

</match>
</httpRequest>

8.6 contentEquals

This task tests if one of the following exactly matchers a specified character sequence:

• the HTTP or SOAP response received from an httpRequest or soapRequest

• the HTTP or SOAP request received using listener

The value to be matched against could be specified either inline, as part of the contentEquals element, or
in an external resource, like a file. Such an external resource is indicated by using the href attribute.
You can refer to file relative to the current directory by specifying a relative URL which doesn't start
with a / character.

You can also choose to ignore any white spaces differences between the two values to be checked. You
can do this by setting the ignoreSpaces attribute.
Attributes
Attribute name Type Default value Description

href String URL to be used to obtain the resource to check the
HTTP response against. This URL can be relative, in
which case the resource is a file relative to the directory
in which Anteater was started from. You should use ei-
ther this attribute or you should specify the value of the
text inline, in the contentEquals element.

ignoreSpaces boolean false Specifies whether spaces should be ignored when check-

Anteater User Manual

29



Attribute name Type Default value Description

ing for equality. Whitespaces in the two values compared
are ignored if this attribute is set to true.

Elements allowed inside contentEquals

Element name Description

jelly Specify a Jelly script, which will generate the contents required from the
server.

Examples

The following example shows how to specify the value to be test against inline. It also ignores any
whitespace differences between the two values.

<httpRequest path="/text.txt"
useTidy="false">
<match>
<contentEquals ignoreSpaces="true">
Here is some freeform text saved with DOS linefeeds.

</contentEquals>
</match>

</httpRequest>

Here is how to generate a HTTP POST body dynamically with a Jelly script, and then require that the
HTTP response body contain the text 'hello world':

<httpRequest path="/text.txt">
<method>POST</method>
<contentEquals>
<jelly script="genBody.jelly"/>

</contentEquals>
<match>
<contentEquals ignoreSpaces="true">
hello world

</contentEquals>
</match>

</httpRequest>

8.7 regexp

This task checks whether:

• the HTTP or SOAP response received from an httpRequest or soapRequest

• or the HTTP or SOAP request received using listener

match a regular expression pattern.

The language used for specifying the regular expression is that of Perl5. Here is a brief reminder of this
language:

• \ - quote the next metacharacter

Anteater User Manual

30



• ^ - match at the beginning of the line

• . - match any character except newline (but see below on how to alter this behavior)

• | - specifies an alternative

• () - specifies a group

• [] - a character class. Use - to specify ranges, or simply enumerate the characters in the set.

• * - match 0 or more times

• + - match 1 or more times

• ? - match 1 or 0 times

• {n} - match exactly n times

• {n,} - match at least n times

• {n,m} - match at least n times, but no more than m times

• any other character outside the above constructs matches that character

See the Jakarta ORO package documentation for a fuller description.
Attributes
Attribute name Type Default value Description

pattern String Specifies the regular expression pattern to be used. You
must specify the pattern using either this attribute or by
placing it inline, inside the regexp element.

ignoreCase boolean false Whether the match should be performed case insensitive
or not.

singleLine boolean true This attribute indicates whether . in a regular expression
should match newlines (\n). The default is true, so for
example <html>.*</html> will match even if there are
multiple newlines between the html tags.

ignoreSpaces boolean false If true, whitespace in the regexp is normalized and con-
verted to '\s+', thus making irrelevant any whitespace dif-
ferences in the matched text. This is useful for matching
automatically generated HTML responses where whites-
pace (including linefeeds) doesn't matter.

If the 'usetidy' property is true, ignoreSpaces is automati-
cally set to true unless explicitly overridden. The JTidy
algorithm generally reindents the text, making this a sen-
sible default behaviour.

assign String Name of the attribute which will contain, in the case of a
successful match, the value matched by the paranthe-
sised group specified using the group attribute. If the
match is not successful, the property is not modified.

group int 0 In case of a successful match, the value matched by this
group number (specified using paranthesis ()) is as-
signed to the assignproperty. If the match is not suc-

Anteater User Manual

31

http://jakarta.apache.org/oro/api/org/apache/oro/text/regex/package-summary.html
http://jakarta.apache.org/oro/api/org/apache/oro/text/regex/package-summary.html


Attribute name Type Default value Description

cessful the property is not modified.

Elements allowed inside regexp

Element name Description

jelly Specify a Jelly script, which will dynamically generate the required reg-
exp pattern.

Examples

This example checks if the page returned by the server is an HTML page:

<httpRequest useTidy="false" href="some URL">
<match>
<regexp><![CDATA[<html>.*</html>]]></regexp>

</match>
</httpRequest>

Given a text file of the form:

...
struts-dev 795
struts-user 1740
taglibs-dev 342
taglibs-user 644
tomcat-dev 934
tomcat-user 2456
turbine-dev 263
turbine-jcs-dev 17
turbine-jcs-user 21
...

The following example extracts a single line from the file, and assigns part of it to a variable,
${tomcat-user}

<httpRequest
href="http://jakarta.apache.org/~rubys/stats/subscribers/jakarta.apache.org">
<match>
<regexp assign="tomcat-user" singleLine="false" group="1">tomcat-user

(.*)</regexp>
</match>

</httpRequest>

8.8 responseCode

Tests the response code of an HTTP response received by httpRequest or soapRequest .

See http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html for a link of valid response codes.
Common ones include 200 (OK), 301 (Moved Permanently), 404 (Not Found).
Attributes
Attribute name Type Default value Description

value int The expected response code, eg 200

Anteater User Manual

32

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


Attribute name Type Default value Description

pattern int A regexp pattern which the response code (or part
thereof) should match. Eg 3.. for all 300-class response
codes.

assign string Name of a property to set to the returned response code.
If a regexp group was specified in pattern, then the
group value will be set instead.

Elements allowed inside responseCode

Element name Description

jelly Specify a Jelly script, which will dynamically generate the required re-
sponse code (equivalent to the 'value' attribute).

Examples

The following example shows how to test the response code of an httpRequest task. The expected
response code here is 200.

<httpRequest href="some URL">
<match>
<responseCode value="200"/>

</match>
</httpRequest>

Here we use a regexp pattern to test if the response code was 300-class "Redirection" response.

<httpRequest href="some URL">
<match>
<responseCode pattern="3.."/>

</match>
</httpRequest>

This is useful in conjunction with a property setter:

<httpRequest href="some URL">
<match assign="ok">
<responseCode pattern="2.."/>

</match>
<match assign="redirected">
<responseCode pattern="3.."/>

</match>
<if>
<isset property="redirected"/>
<then>
<echo>We were redirected... </echo>

</then>
</if>

</httpRequest>

8.9 xpath

This task is used to test the existence of a particular element or its value. This task assumes that the body
of the response or request is an XML document. Action tasks like soapRequest , and httpRequest and
listener with the useTidy attribute set to true, assume the response or request body is an XML

Anteater User Manual

33



document.

Care should be taken when matching against the result returned by the httpRequest task. In most cases,
you cannot use xpath to match for elements, attributes or values using XPath expressions. You can do
this only when you know the HTML response you obtained is a valid XML document, like in the case of
XHTML. If you do want to test for XPath expressions, then you need to run JTidy on the response; you
do this using the useTidy attribute of the httpRequest element. JTidy can be enabled for a whole script
by setting the 'default.usetidy' property to true (see the Configuration section).

To test the existence of a particular element or element, the xpath task uses XPath as the language to
address parts of the XML document.

To test the existence of an element or attribute, you should set the select attribute to the XPath value
you're interested in. The xpath task will verify the existence of that element in the XML document in the
body. If in addition to the select attribute, you also specify the assign attribute, the text value of the
selected element or attribute is assigned to the property named by assign.

If you're interested in a particular value of an element or attribute, in addition to the select attribute,
you should specify the value attribute. The actual value of the element or attribute is literally compared
against this value. If the assign attribute is also present, and the element or attribute described by
select exists, and its value is the same with the one specified by the value attribute, the property
named by assign will contain the matched value.
Attributes
Attribute name Type Default value Description

select String The XPath string to identify an element or attribute in
the body of the HTTP response or request. Mandatory.

value String The value expected for element or attribute identified by
the select attribute.

pattern String Sets a regular expression which the string value of the
'select' XPath expression must match.

If the pattern contains a group, (...), then the matched
value, if any, is placed in the assign property.

ignoreSpaces boolean false If true, whitespace in the 'pattern' regexp is normalized
and converted to '\s+', thus making irrelevant any whites-
pace differences in the matched text.

ignoreSpaces is automatically set to true if the 'usetidy'
flag is set, unless explicitly set.

group int 0 Used in conjunction with the 'pattern' attribute. In case of
a successful pattern match, the value matched by this
group number (specified using paranthesis ()) is as-
signed to the assignproperty.

assign String In case of a successful match, it will contain the value of
the attribute or element specified by select.

Elements allowed inside xpath

Anteater User Manual

34

http://lempinen.net/sami/jtidy/
http://www.w3.org/TR/xpath


Element name Description

jelly Specify a Jelly script, which will dynamically generate the string value of
the matched xpath node (equivalent to the 'value' attribute).

Examples

Check for the existence of a particular element, and assign its value to a property. In this example the
message is printed out only if there is an element with with the indicated path. If no suche element
exists, the matcher fails and the echo task is not executed.

<soapRequest href="http://services.xmethods.net:80/soap"
content="test/requests/get-quote.xml">
<namespace prefix="soap" uri="http://schemas.xmlsoap.org/soap/envelope/"/>
<namespace prefix="n" uri="urn:xmethods-delayed-quotes"/>
<match>
<xpath select="soap:Envelope/soap:Body/n:getQuoteResponse/Result"
assign="result"/>

</match>
</soapRequest>
<echo>XPath-selected the value '${result}'</echo>

This example is the same as above, but it will print the message only if the value matches exactly the
one specified in the value attribute of xpath.

<soapRequest href="http://services.xmethods.net:80/soap"
content="test/requests/get-quote.xml">

<namespace prefix="soap" uri="http://schemas.xmlsoap.org/soap/envelope/"/>
<namespace prefix="n" uri="urn:xmethods-delayed-quotes"/>
<match>
<xpath select="soap:Envelope/soap:Body/n:getQuoteResponse/Result"
value="20"
assign="result"/>

</match>
</soapRequest>
<echo>XPath-selected the value '${result}'</echo>

8.10 relaxng

This task tests XML for conformance to a specified Relax NG schema. It is based on James Clark's Jing
task for Ant .
Attributes
Attribute name Type Default value Description

rngFile String Basedir-relative path to a file containing a Relax NG
schema

compactSyntax boolean false Whether or not the specified file is in Relax NG's com-
pact syntax .

checkId boolean true Whether to check for ID/IDREF/IDREFS compatibility

Elements allowed inside relaxng: none

Examples

Anteater User Manual

35

http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
http://www.thaiopensource.com/relaxng/jing-ant.html
http://www.thaiopensource.com/relaxng/jing-ant.html
http://www.thaiopensource.com/relaxng/jing-ant.html
http://www.thaiopensource.com/relaxng/jing-ant.html
http://www.thaiopensource.com/relaxng/compact/syntax.html
http://www.thaiopensource.com/relaxng/compact/syntax.html


Checks that an XSLT file is valid

<httpRequest group="std" path="/identity.xsl">
<match>
<!--
<xpath select="xsl:stylesheet/xsl:output"/>
-->
<relaxng rngFile="test/xslt.rng"/>

</match>
</httpRequest>

8.11 sendResponse

Sends a response to an HTTP request received by the listener task.

With this task you can specify:

• the body content of the response to be sent back, by a nested 'contentEquals' element, 'href'
attribute, nested text or nested jelly task.

• the response code to be used, by a nested 'responseCode' element or 'responseCode' attribute.

• any HTTP headers to send with the response, through nested 'header' elements.

• the MIME type of the response via the 'contentType' attribute.

Attributes
Attribute name Type Default value Description

href String Indicates the URL of a resource that contains the re-
sponse to be sent back. A relative URL is interpreted as
relative to the directory Anteater was started from. You
can use any URL supported in Java, including HTTP and
FTP, to read an external resource of file. Mandatory.

contentType String text/html Specifies the MIME type to be associated with the re-
sponse.

responseCode int 200 The response code to be sent be as part of the HTTP re-
sponse.

Elements allowed inside sendResponse

Element name Description

responseCode Specify the HTTP response code.

header Adds a header to the HTTP response.

contentEquals Specifies the HTTP body.

jelly Specify a Jelly script, which will dynamically generate the HTTP re-
sponse body.

Examples

The following listener responds to POSTed message by returning a HTTP 202 response, with header

Anteater User Manual

36



'X-date' set to whatever ${date} is, and a text body with normalized spaces.

<listener path="/text.txt">
<match>
<method>POST</method>

<sendResponse>
<responseCode>202</responseCode>
<header name="X-date" value="${date}"/>
<contentEquals ignoreSpaces="true">
Here is some freeform text.

</contentEquals>
</sendResponse>

</match>
</listener>

This example receives a request on a URL and sends back an HTTP response with a response code of
201:

<listener path="/good.html"
description="Process a simple request">

<match>
<method value="GET"/>
<sendResponse href="test/responses/good.html"

contentType="text/html"
responseCode="301"/>

</match>
</listener>

9 Webapp tasks

These tasks relate to Anteater's ability to deploy webapps on an internal Tomcat server.

9.1 servletContainer

Anteater has the ability to listen for incoming HTTP requests, which is useful in testing asynchronous
SOAP. Advanced SOAP applications interact by sending asynchronous SOAP requests to each other.
After the request is sent, the other party responds later with a SOAP request to the initiating party.

Listening for incoming HTTP requests is achieved by embedding the Tomcat 3.3 servlet container inside
Anteater.

servletContainer is used in conjunction with the listener element, which registers handlers with the
servlet container. The servlet container should be started before any listener task is to be executed.
Usually this is achieved by placing the servletContainer task inside an init target, on which all the
other tasks depend upon:

<target name="init">
<servletContainer port="8100, 8101"/>

</target>

<target name="my-test" depends="init">
<listener path="/foo" ... /> <!-- Register a listener -->
<httpRequest request="/foo" .. > <!-- Call the listener -->

</target>

Anteater User Manual

37



Attributes
Attribute name Type Default value Description

port Integer 8080 Defines the ports on which the servlet container should
listen on. Multiple ports can be specified by enumerating
them with comma or space in between.

action String start What action you wish the servlet container to take. If not
specified, defaults to starting the container. Possible val-
ues are start and stop.

maxThreads Integer Defines the maximum number of threads that can be
spawned off by the servlet container when handling in-
coming HTTP requests.

maxSpareThreads Integer Defines the maximum number of spare threads that can
be alive at any time.

minSpareThreads Integer Defines the minimum number of spare threads that
should be available at all times.

Elements allowed inside servletContainer: none

9.2 deploy

Because Anteater embeds a full blown servlet container in it, you can use Anteater to quickly deploy and
test your Web application. This testing is not a replacement for testing how your Web application
behaves when deployed on your preferred application server however. It is provided just as a quick way
for you test the features of your application much faster.

In future, Anteater will add the ability to deploy a Web application on external servlet containers and
application servers. And since Anteater is based on Ant, you can write a target which will start your
application server right before the tests, run them and then shut it down at the end of the tests.
Attributes
Attribute name Type Default value Description

path String Specifies the context path where the new Web applica-
tion will be accessible in the URL space of the servlet
container.

webapp String The path to the location on the file system of the Web
application. This path should point to either a .war file
or to the expanded directory of the Web application.

Elements allowed inside deploy: none

Examples

The following example shows how to deploy Apache Cocoon on Anteater's internal servlet container.

<target name="deploy" depends="init" description="Run Cocoon">

Anteater User Manual

38

http://xml.apache.org/cocoon/
http://xml.apache.org/cocoon/


<deploy path="/cocoon" webapp="../xml-cocoon2/build/cocoon/webapp"/>
...

</target>

10 Auxiliary tasks

These tasks have structural, configuration or metadata roles in an Anteater script.

10.1 group

A Group is a scoping mechanism for Anteater data types and tasks. A group acts as a container for sets
of Anteater objects, where member objects can access each other. So, for example, action tasks will
automatically use any logger or session objects defined in the group they belong to.

Since a Group is an Anteater object like any other, Groups can belong to groups. This is exploited to
implement group inheritance, where Groups inherit properties, loggers and sessions from their
parent Group, where a Group's parent is the Group it belongs to.

The inheritance rules are as follows:

• Properties are inherited unless overridden.

• Loggers are inherited as a set, ie they are either all inherited, or all overridden. Thus if our parent
defines two loggers, and we define one, only our one will be used.

• Sessions are inherited unless overridden

There is a default, primordial Group to which all Groups and Tasks belong, unless otherwise specified.
This is defined in org.apache.anteater.test.DefaultGroup , and is overridden by any group defined with id
default.

Groups can be declared either within targets, or straight under Ant's project element.

See the Grouping and Configuration sections for a user-perspective overview of how grouping works.
Attributes
Attribute name Type Default value Description

id string Sets the group's id string. This is a required attribute,
since without it there is no way to refer to the group.

If the id is set to default, the group will be used as the
base of the group hierarchy, ie every other group and
task will (possibly indirectly) belong to the default
group.

inherits string Sets this group's parent group. This group inherits prop-
erties, loggers and sessions from its parent.

If a group is assigned id default, it acts as the root
group, from which all others inherit. Thus by redefining
the default group (eg by adding a logger), one can
change the behaviour of all tasks in a script. See Group-

Anteater User Manual

39

javadoc:org.apache.anteater.test.DefaultGroup


Attribute name Type Default value Description

ing for details.

Elements allowed inside group

Element name Description

session Add a session to the group. This session will override that declared in the
group's parent. All member tasks will use this session.

logger Add a logger to the group, causing all member tasks to use it. No loggers
will be inherited from the group's parent.

property Add a property to the group. If a property of the same name was defined
in this group's parent, then that property is overridden. Otherwise, proper-
ties are inherited.

Properties are used to configured Anteater behaviour. See the Configura-
tion section for more on this.

uses Specifies requirements on the underlying Anteater installation that mem-
bers of this group have. For example:

<uses>
<feature name="jelly"/>
<feature name="xhtml-schema"/>

</uses>

Specifies that tasks in this group depend on the 'jelly' and 'xhtml-schema'
Anteater upgrades.

group Adds a group as a member of this group. The current group becomes the
added group's parent. Alternatively, the inherits attribute may be used
to indicate group inheritance.

Examples

Taken from the Grouping section:

<project name="groupdemo" default="main">
<taskdef resource="META-INF/Anteater.tasks"/>
<typedef resource="META-INF/Anteater.types"/>

<group id="mytests">
<property name="debug" value="0"/>

</group>
<group id="livesite" inherits="mytests">
<property name="host" value="www.mysite.com"/>
<logger type="xml" todir="{docs.dir}"/> <!--
HTML report -->

</group>
<group id="devsite" inherits="mytests">
<property name="host" value="www.mysite-dev.com"/>
<property name="debug" value="1"/> <!-- devsite a bit unstable -->
<property name="failonerror" value="true"/> <!-- Don't waste time testing whole

site -->

Anteater User Manual

40



<group id="devsite-brokenbit"> <!-- Very broken bit of devsite -->
<property name="debug" value="10"/> </group>

</group>

<target name="main">
<!-- Will have debug=10, host=www.mysite-dev.com, failonerror=true, and log
to the console -->
<httpRequest group="devsite-brokenbit" path="/broken.html"/>

</target>
</project>

10.2 logger

Anteater logs various events that occur when running a script. These include notifications of errors
(unexpected), failures (expected), when an action tasks and tests start or stop.

Typically, action tasks get their loggers through their group, although loggers can be added directly to
action tasks. The default group contains a logger of type colour, which is responsible for the messages
seen on the console.

The XML logger produces XML log files. These can be rendered to HTML by calling the built-in
Anteater report task like this:

<target name="report" description="Generates a HTML report">
<ant antfile="${anteater.report}">
<property name="log.dir" location="${log.dir}"/>
<property name="report.dir" location="reports"/>

</ant>
</target>

The ${anteater.report} variable is automatically set from the anteater script, as is
${anteater.home}.

Attributes
Attribute name Type Default value Description

type String plain Specifies the type of logger, which determines what to
do with logs.

Currently defined loggers are:

minimal
Writes minimal text logs to the console

plain
Logs as plain text, by default to the terminal

colour
Logs as colour text (ANSI escape codes) to the ter-
minal. By default, messages are displayed as nor-
mal, and errors are displayed in red, allowing one to
detect at a glance if something went wrong.

xml
Logs as xml, by default to a file.

classname String The value must be a valid and existing Java class name.

Anteater User Manual

41



Attribute name Type Default value Description

This attribute specifies exactly which class to use as a
logger. The class can be defined externally to Anteater.
Loggers must implement the Logger interface.

useFile boolean Specifies whether to send logs to a file or to the console.

filenameFormat String Specify the filename format for log files. Default is
TEST-

${groupid}_${taskname}_${url}_line-${lineno}_

test-${vm-count}${_run-:run}.xml

Pretty much any property can be used, both Anteater-spe-
cific properties (e.g. the task's description), Group
properties, and Ant <property> properties.

The following properties are predefined:

Property name Description Example

groupid Variable containing the 'group
identifier' in filesystem-friendly
form.

default, My_Wonderful_Group

taskname Variable containing name of cur-
rently running Task

httpRequest, Listener

url Variable containing a filesystem-
friendly rendition of the request
URL, minus the request params.

http___www_bibleportalproje

ct_com_cgi_xml_p8_php

lineno Variable containing line number
of task that generated this log en-
try

23

vm-count Variable containing a counter
unique within this Java Virtual
Machine. Used to ensure unique-
ness for looping test outputs.

1, 2, 3, ...

run Variable containing a counter
that ensures the current filename
will be unique within its direc-
tory. Prevents multiple runs of an
Anteater script from overwriting
a single output file.

1, 2, 3, ...

fqcn Variable containing fully quali-
fied classname of current task.

org.apache.anteater.test.Ht

tpRequest

raw-url Variable containing unmodified
request URL.

http://foo.com/server?a=b

raw-url-noparams Variable containing request URL
with request params stripped.

http://foo.com/server

Anteater User Manual

42

javadoc:org.apache.anteater.test.log.Logger


Attribute name Type Default value Description

Property name Description Example

groupid-raw Variable containing the 'group
identifier' in unescaped form.

default, My Wonderful Group

There is one quirk in the format: variables of the form
${prefix:variable}. These are interpreted as follows:
if ${variable} is defined, and has value value, then
${prefix:variable} is replaced with 'prefixvalue'. For
example, ${run_:run} becomes 'run_1', or ${run at

:date} becomes 'run at 10/3/03'. If variable is unde-
fined, the variable is replaced with ''. This hackery is pri-
marily for the 'run' variable, which won't exist if over-

write is true (see below).

overwrite boolean Specifies whether to overwrite log files from previous
Anteater runs.

By default, if an Anteater script is run twice (two JVM
instances), the log files of the second will overwrite the
first. By setting overwrite to false, log files will have
_runX appended to their name, where X is the next in the
file sequence.

todir String logs Specifies a directory in which to create logs, if any. The
value must be a directory relative to Anteater's base di-
rectory. Only relevant if useFile is true.

extension String If logging to a file, sets the file extension, e.g. if the
value is .xml, it becomes the file extension.

group String Add this logger to the specified group.

Elements allowed inside logger: none

10.3 session

Declares an object which stores cookies, and transparently maintains state between multiple action
tasks.

The session object does what users have come to expect browsers to do; it caches cookies sent from the
server, and resends them on subsequent requests to that server. This is the standard way in which state

is maintained in HTTP-based client/server applications.

Usually, one would not need to use this tag, as the default group already defines a session. This tag is
useful when you don't want to use the default session for some reason. A session can be shared among
multiple action tasks by assigning it an id, and then using refid to refer to it.

Attributes

Anteater User Manual

43



Attribute name Type Default value Description

id string Sets the session id, for use later on with <session re-

fid="..."/>

Elements allowed inside session: none

10.4 namespace

Specifies a mapping from XML namespace prefix to namespace URI. This mapping is used in
XML-aware testers like xpath

A namespace mapping is required so that when namespace-prefixed elements are used in tasks like
xpath , they correctly match equivalent elements in the HTTP response's XML, regardless of their
prefix. So if we got back <x:foo xmlns:x="some.uri"/>, and tried to match it with <xpath

select="/y:foo"/>, we'd need to a namespace mapping with <namespace prefix="y"

uri="some.uri"/>

If you didn't understand a word of this, and don't know what a namespace is, please see the namespace
FAQ .
Attributes
Attribute name Type Default value Description

prefix string The namespace prefix. This prefix cannot be blank.

uri string The namespace URI to associate with the prefix.

Elements allowed inside namespace: none

Examples

This example applies a bunch of XPath tests to a Cocoon-generated XML document

<httpRequest path="/nsxml.xml">
<!--
We can't use a blank namespace here. According to the jaxen javadocs:
"In XPath, there is no such thing as a 'default namespace'. The
empty prefix always resolves to the empty namespace"
-->
<namespace prefix="x" uri="http://xml.apache.org/cocoon/requestgenerator/2.0"/>
<match>
<xpath select="/"/>
<xpath select="/x:request"/>
<xpath select="/x:request/x:requestHeaders" assign="h"/>
<xpath select="/x:request/x:requestHeaders/x:header[@name='host']"/>
<xpath select="/x:request/x:requestHeaders/x:header[@name='host']/text()"/>

</match>
</httpRequest>

10.5 uses

Specifies what Anteater features the script (or a group) needs to run. A Feature is either some aspect of
Anteater itself (notably the version), or an optional feature.

Anteater User Manual

44

http://www.rpbourret.com/xml/NamespacesFAQ.htm#q1_1
http://www.rpbourret.com/xml/NamespacesFAQ.htm#q1_1
http://www.rpbourret.com/xml/NamespacesFAQ.htm#q1_1


Since the advent of the Update System , an Anteater install can have 'updates' applied to it, to give it
extra capabilities. Scripts that rely on extra capabilities (extra schemas, for example) will break on
Anteater installations lacking those updates. The <uses> tag lets such a script declare it's dependence on
an optional feature.

The <uses> tag is scoped by the group it belongs to. By declaring it in the 'default' group, it applies to
the whole script. <uses> tags are cumulatively inherited from parent groups, and only 'evaluated' when a
task in the group is executed. Outside a group, a <uses> tag is meaningless, so they should always be
found either inside a group tag, or have a 'group' attribute.
Attributes
Attribute name Type Default value Description

version dotted
decimal
(x.y.z)

(Any

anteater

version)

This optional attribute specifies the Anteater version the
script is known to work with. The format is a series of
decimals separated by dots, most significant first, eg
'0.9.14'.

Setting a version does not imply that the script is limited
to running on the specified version (the tag is 'uses', not
'requires'). The version attribute merely provides infor-
mation to Anteater, allowing future versions to maintain
better backwards-compatibility (eg, by applying an
XSLT at runtime to make a script comply with a later
format).

group string Specifies the group that this 'uses' applies to. The same
thing can be achieved by nesting the 'uses' tag inside a
group element.

The specified group must exist. If 'default', the require-
ments apply to the whole script.

Elements allowed inside uses

Element name Description

feature Specifies an optional Anteater 'upgrade' that tasks in the current group re-
quire to run.

Examples

Here is an example which applies to the whole script (default group), specifying the Anteater version
known to work (0.9.14), and a requirement on the 'xhtml-schema' upgrade.

...
<group id="default">
<uses version="0.9.14">
<feature name="xhtml-schema"/>

</uses>
</group>

Anteater User Manual

45

updates.html
updates.html


Then later, the script could safely rely on the optional schema:

<httpRequest>
<match>
<relaxng

rngFile="${anteater.resources}/schemas/rng/xhtml/xhtml.rng"/>
</match>

</httpRequest>

Here is a hierarchy of groups to demonstrate how requirements are accumulated.

<group id="default">
<uses version="0.9.14"/> <!-- Known to run with 0.9.14 -->
<group id="xhtml-tests">
<uses>
<feature name="xhtml-schema"/>

</uses>
<group id="xhtml+mathml-tests">
<uses>
<feature
name="mathml-schema"/>

</uses>
</group>

</group>
</group>

Tasks in group 'xhtml-tests' will fail unless 'xhtml-schema' is installed, and tasks in group
'xhtml+mathml-tests' will fail unless both 'xhtml-schema' and 'mathml-schema' are installed.

10.6 feature

This tag is nested inside the uses tag. It specifies an Anteater feature that must be present, typically
installed via the Update System
Attributes
Attribute name Type Default value Description

name string Specifies the name of the required Anteater feature, eg
'jelly', or 'xhtml-schema'.

10.7 checkuses

The checkuses task will accumulate the features specified by all uses elements in the task's group, and
check if the current Anteater installation can provide them.

This check is performed on every action task that contains (or whose group contains) a uses tag, but
occasionally one may want to perform this check explicitly, which is what 'checkuses' is for. It takes no
nested elements or attributes other than 'group'.
Attributes
Attribute name Type Default value Description

group string default Specifies the group whose requirements we are to check.
Like all tasks, by default this belongs to the 'default'

Anteater User Manual

46

updates.html
updates.html


Attribute name Type Default value Description

group.

Examples

Here is how we could rely on the 'jelly' upgrade to check if we can use the jelly task "natively".

<uses group="default" version="0.9.13">
<feature name="jelly"/>

</uses>

<target name="jelly">
<checkuses/>
<taskdef name="jelly"
classname="org.apache.commons.jelly.task.JellyTask"/>

<jelly script="resources/jelly/hello_world.jelly"/>
<echo>title is '${title}'</echo>

</target>

As no 'group' is specified, 'default' is assumed. Without the <checkuses> element, the target would die
with an error, as the specified class is not in Anteater by default.

11 External tasks

Anteater provides few more tasks which do not fit into any of the categories above. They are used to
provide additional functionality, useful when writing tests.

Some of these tasks are provided by Ant Contrib project, distributed with Anteater.

The following tasks are available to Anteater:

• foreach - iterate over a collection of values

11.1 foreach

See the ant-contrib documentation for info about this task.
11.2 jelly

Many Anteater tasks can have nested content. For example, the contentEquals element can take nested
text, which will constitute the HTTP body:

<contentEquals>This is the HTTP body</contentEquals>

Anteater provides a way to dynamically generate this body text, using Jelly scripts. One simply replaces
the static text with a <jelly> element:

<contentEquals>

Anteater User Manual

47

http://sourceforge.net/projects/ant-contrib
http://sourceforge.net/projects/ant-contrib
http://ant-contrib.sourceforge.net/ant-contrib/manual/tasks/index.html
http://jakarta.apache.org/commons/sandbox/jelly/


<jelly script="generateResponse.jelly"/>
</contentEquals>

Anteater will run the Jelly script, and use it's output as the nested content.

By default, Anteater does not come with all the jars required to use Jelly. To jelly-enable an Anteater
installation, run the following command:

[UNIX] anteater -f $ANTEATER_HOME/resources/scripts/install-jelly.xml
[Windows] anteater -f

%ANTEATER_HOME%\resources\scripts\install-jelly.xml

Or alternatively, run the following Anteater script:

<project name="jelly-install" default="main" basedir=".">
<target name="main">
<ant dir="${anteater.resources}/scripts" antfile="install-jelly.xml"/>

</target>
</project>

Where ANTEATER_HOME is where you installed Anteater.

You will be prompted to enter the URL of a jar repository. If you just press enter, the default will be
used, and the install is automatic from there on. Alternatively, if you have a Maven repository locally,
you can try pointing the script at this.
Attributes
Attribute name Type Default value Description

script string File path a Jelly script to run.

url string URL of a Jelly script to run.

output string Specifies the path to a file in which to store the script re-
sults.

Elements allowed inside jelly: none

12 Invoking from Ant

Often, people want to integrate Anteater with an existing Ant-based build system. Due to classpath
issues, Anteater tasks cannot currently be used directly within an existing Ant script. The current
solution is to invoke Anteater with a <java> task, as follows:

<property name="anteater.home" location="/usr/local/anteater"/>
<java classname="org.apache.tools.ant.Main" fork="true">
<classpath>
<pathelement location="${anteater.home}/resources"/>
<fileset dir="${anteater.home}">
<include name="lib/**/*.jar"/>
<include name="tomcat/**/*.jar"/>

</fileset>
</classpath>
<jvmarg value="-Dant.home=${anteater.home}"/>

Anteater User Manual

48

http://jakarta.apache.org/turbine/maven


<jvmarg value="-Danteater.home=${anteater.home}" />
<jvmarg value="-Danteater.report=${anteater.home}/resources/scripts/report.xml" />
<jvmarg value="-Danteater.resources=${anteater.home}/resources" />
<arg line="-f examples.xml"/>
<arg value="-propertyfile" />
<arg value="${anteater.home}/resources/META-INF/Anteater.properties" />

<!--
<arg value="-Ddefault.debug=10"/>
-->

</java>

The anteater.home variable must be set to where you have installed Anteater. Replace examples.xml

with your script. Alternatively, you can parametrize this:

<antcall target="anteater">
<param name="script" value="examples.xml"/>

</antcall>

with this target:

<target name="anteater" description="Run Anteater">
<property name="anteater.home" location="build/anteater-${version}"/>
<java classname="org.apache.tools.ant.Main"

fork="true">
<classpath>
<fileset dir="${anteater.home}">
<include name="lib/**/*.jar"/>
<include name="tomcat/**/*.jar"/>

</fileset>
</classpath>
<jvmarg value="-Dant.home=${anteater.home}"/>
<arg line="-f ${script}"/>
<!--
<arg value="-Ddefault.debug=10"/>
-->

</java>
</target>

13 Related projects

There are a number of related open source Java projects in the realm of functional testing:

13.1 Latka

Latka is an Apache Jakarta project with the same aims as Anteater. It has an equivalent set of
validators, good documentation, and much better HTTP/HTTPS support than Anteater due to its use
of the HttpClient API .

In terms of implementation, Latka plays it very straight, implementing its own scripting engine with the
SAX API. No distiction is made between parse time and execution time. The general Latka API is clean
and well-designed.

Anteater's primary advantage over Latka is the flexibility engendered by building on top of the Ant
engine. Latka scripts do not let one set properties (although properties can be passed in), or the ability to
group tests (Ant targets). However, it looks likely that future version of Latka will be based on Jelly , an

Anteater User Manual

49

http://jakarta.apache.org/commons/latka/
http://jakarta.apache.org/commons/httpclient/
http://jakarta.apache.org/commons/httpclient/
http://jakarta.apache.org/commons/sandbox/jelly/


XML scripting language that is a functional superset of Ant, and would thus form an excellent base for a
functional testing tool.

13.2 WebTest

Canoo WebTest is another Ant-based functional testing system. It is primarily aimed at testing HTML
sites, with a number of HTML-specific validators, and the ability to script interactions over multiple
HTML pages. In contrast, Anteater is more more low-level, but contains better support for XML and
web services testing. WebTest and Anteater are thus quite complementary, especially since both run in
Ant.

13.3 PushToTest TestMaker

PushToTest TestMaker is a relatively mature product, having been in development for 5 years (see this
general@jakarta email ). TestMaker scripts are written in Python; more specifically, jython , which
compiles Python scripts into Java bytecode. They have a custom Java API (TOOL) which is the core
testing code, and is used in jython scripts.

The approach of using Python as a testing language sounds really good. Why mess around inventing
XML scripting languages when you could use a real one? Python is one of the best, and by using the
Jython compiler, one gets all the portability of Java too.

In practice, I'm not too sure how well it works. The TestMaker scripts look very low-level, and overly
complicated for what they do. But then I haven't really explored much, so don't take this criticism too
seriously.

TestMaker is a curious project in the sense that it seems primarily an integration effort, combining the
NetBeans API, Jython and a testing API together to create an integrated testing system. The result is
good, especially if you like IDEs.

14 Acknowledgements

Anteater was started by Ovidiu Predescu 's need to have a testing framework for testing asynchronous
Web services (those that send asynchronous SOAP messages between them, like ebXML and BizTalk ),
but also for testing Apache Cocoon .

Very early and extremely valuable feedback was provided by Jeff Turner . He later spent more time
implementing new features and improving the general design and implementation of the code, and
became an active developer.

Anteater would not have been possible without the Apache Ant project. Ant is a great little tool, very
useful for robust software development. If you're not already using it, you should consider using it in
your projects.

Anteater was inspired by Tomcat's 3.x HttpClient testing framework, whose primary author is Costin
Manolache . HttpClient is still in use in the 3.x releases of Tomcat.

Anteater's listener facility would not have been possible without Costin's expert help, who fixed the

Anteater User Manual

50

http://webtest.canoo.com/webtest/manual/WebTestHome.html
http://webtest.canoo.com/webtest/manual/WebTestHome.html
http://www.pushtotest.com/ptt
http://www.pushtotest.com/ptt
http://marc.theaimsgroup.com/?l=jakarta-general&m=103064493222452&w=2
http://marc.theaimsgroup.com/?l=jakarta-general&m=103064493222452&w=2
http://marc.theaimsgroup.com/?l=jakarta-general&m=103064493222452&w=2
http://www.jython.org/
http://webweavertech.com/ovidiu/weblog/
http://webweavertech.com/ovidiu/weblog/
http://xml.coverpages.org/ebXML.html
http://www.microsoft.com/biztalk/
http://xml.apache.org/cocoon/
http://xml.apache.org/cocoon/
http://webweavertech.com/jefft/weblog/
http://webweavertech.com/jefft/weblog/
http://jakarta.apache.org
mailto:cmanolache       at yahoo dot com
mailto:cmanolache       at yahoo dot com


major bugs in the Anteater code embedding Tomcat 3.3.

Anteater makes use of some Ant extension tasks, provided by the Ant-contrib project.

The following people provided valuable feedback, which helped improve the usability and stability of
the code:

• William Vambenepe

• Shridhar Diwan

• Bill Jones

• Ivelin Ivanov

Anteater's primary developers are:

• Ovidiu Predescu

• Jeff Turner

Anteater User Manual

51

http://sourceforge.net/projects/ant-contrib
http://webweavertech.com/ovidiu/weblog/
http://webweavertech.com/ovidiu/weblog/
http://webweavertech.com/jefft/weblog/
http://webweavertech.com/jefft/weblog/

