
Auxiliary tasks

by Ovidiu Predescu, Jeff Turner

NOTICE: Copyright © 2002-2003 Ovidiu Predescu and Jeff Turner. All rights reserved.
The Anteater manual may be reproduced and distributed in whole or in part, in any medium, physical or
electronic, so long as this copyright notice remains intact and unchanged on all copies.

1. Auxiliary tasks
These tasks have structural, configuration or metadata roles in an Anteater script.

1.1. group

A Group is a scoping mechanism for Anteater data types and tasks. A group acts as a
container for sets of Anteater objects, where member objects can access each other. So, for
example, action tasks will automatically use any logger or session objects defined in the
group they belong to.

Since a Group is an Anteater object like any other, Groups can belong to groups. This is
exploited to implement group inheritance, where Groups inherit properties, loggers and
sessions from their parent Group, where a Group's parent is the Group it belongs to.

The inheritance rules are as follows:

• Properties are inherited unless overridden.
• Loggers are inherited as a set, ie they are either all inherited, or all overridden. Thus if

our parent defines two loggers, and we define one, only our one will be used.
• Sessions are inherited unless overridden

There is a default, primordial Group to which all Groups and Tasks belong, unless otherwise
specified. This is defined in org.apache.anteater.test.DefaultGroup, and is overridden by any
group defined with id default.

Page 1
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

Auxiliary tasks.html#elem:logger
Auxiliary tasks.html#elem:session
Auxiliary tasks.html#elem:session
http://aft.sourceforge.net/javadocs/org/apache/anteater/test/DefaultGroup.html
http://aft.sourceforge.net/javadocs/org/apache/anteater/test/DefaultGroup.html


Groups can be declared either within targets, or straight under Ant's project element.

See the Grouping and Configuration sections for a user-perspective overview of how
grouping works.

Attribute name Type Default value Description

id string Sets the group's id string.
This is a required
attribute, since without it
there is no way to refer to
the group.

If the id is set to
default, the group will
be used as the base of the
group hierarchy, ie every
other group and task will
(possibly indirectly)
belong to the default
group.

inherits string Sets this group's parent
group. This group
inherits properties,
loggers and sessions
from its parent.

If a group is assigned id
default, it acts as the
root group, from which
all others inherit. Thus by
redefining the default
group (eg by adding a
logger), one can change
the behaviour of all tasks
in a script. See Grouping
for details.

Table 1: Attributes
Element name Description

session Add a session to the group. This session will override
that declared in the group's parent. All member tasks
will use this session.

logger Add a logger to the group, causing all member tasks

Auxiliary tasks

Page 2
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

.html#elem:Grouping
.html#elem:Configuration
.html#elem:Grouping
Auxiliary tasks.html#elem:session
Auxiliary tasks.html#elem:logger
Auxiliary tasks.html#elem:logger


to use it. No loggers will be inherited from the
group's parent.

property Add a property to the group. If a property of the same
name was defined in this group's parent, then that
property is overridden. Otherwise, properties are
inherited.

Properties are used to configured Anteater behaviour.
See the Configuration section for more on this.

uses Specifies requirements on the underlying Anteater
installation that members of this group have. For
example:

<uses>
<feature name="jelly"/>
<feature name="xhtml-schema"/>

</uses>

Specifies that tasks in this group depend on the 'jelly'
and 'xhtml-schema' Anteater upgrades.

group Adds a group as a member of this group. The current
group becomes the added group's parent.
Alternatively, the inherits attribute may be used
to indicate group inheritance.

Table 2: Elements allowed inside group
Examples

Taken from the Grouping section:
<project name="groupdemo" default="main">
<taskdef resource="META-INF/Anteater.tasks"/>
<typedef resource="META-INF/Anteater.types"/>

<group id="mytests">
<property name="debug" value="0"/>

</group>
<group id="livesite" inherits="mytests">
<property name="host" value="www.mysite.com"/>
<logger type="xml" todir="{docs.dir}"/> <!--
HTML report -->

</group>
<group id="devsite" inherits="mytests">
<property name="host" value="www.mysite-dev.com"/>
<property name="debug" value="1"/> <!-- devsite a bit unstable -->

Auxiliary tasks

Page 3
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

.html#elem:Configuration
Auxiliary tasks.html#elem:uses
Auxiliary tasks.html#elem:group
.html#elem:Grouping
.html#elem:Grouping


<property name="failonerror" value="true"/> <!-- Don't waste time testing whole site -->

<group id="devsite-brokenbit"> <!-- Very broken bit of devsite -->
<property name="debug" value="10"/> </group>

</group>

<target name="main">
<!-- Will have debug=10, host=www.mysite-dev.com, failonerror=true, and log
to the console -->
<httpRequest group="devsite-brokenbit" path="/broken.html"/>

</target>
</project>

1.2. logger

Anteater logs various events that occur when running a script. These include notifications of
errors (unexpected), failures (expected), when an action tasks and tests start or stop.

Typically, action tasks get their loggers through their group, although loggers can be added
directly to action tasks. The default group contains a logger of type colour, which is
responsible for the messages seen on the console.

The XML logger produces XML log files. These can be rendered to HTML by calling the
built-in Anteater report task like this:

<target name="report" description="Generates a HTML report">
<ant antfile="${anteater.report}">
<property name="log.dir" location="${log.dir}"/>
<property name="report.dir" location="reports"/>

</ant>
</target>

The ${anteater.report} variable is automatically set from the anteater script, as is
${anteater.home}.

Note:
Logging support is quite weak at the moment; many of the attributes don't work. Development has mainly gone into getting
XML logging working. Send a feature request if you need this fixed.

Attribute name Type Default value Description

type String plain Specifies the type of
logger, which determines
what to do with logs.

Currently defined loggers
are:

minimal
Writes minimal text

Auxiliary tasks

Page 4
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

http://sourceforge.net/tracker/?func=add&group_id=42970&atid=434735
http://sourceforge.net/tracker/?func=add&group_id=42970&atid=434735


logs to the console
plain
Logs as plain text,
by default to the
terminal
colour
Logs as colour text
(ANSI escape
codes) to the
terminal. By
default, messages
are displayed as
normal, and errors
are displayed in
red, allowing one
to detect at a
glance if
something went
wrong.
xml
Logs as xml, by
default to a file.

classname String The value must be a valid
and existing Java class
name. This attribute
specifies exactly which
class to use as a logger.
The class can be defined
externally to Anteater.
Loggers must implement
the Logger interface.

useFile boolean Specifies whether to send
logs to a file or to the
console.

Note:
Loggers currently
ignore this; XML
always logs to a
file, the text
loggers always log
to the screen

filenameFormat String Specify the filename

Auxiliary tasks

Page 5
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

http://aft.sourceforge.net/javadocs/org/apache/anteater/test/log/Logger.html


format for log files.
Default is
TEST-${groupid}_${taskname}_${url}_line-${lineno}_test-${vm-count}${_run-:run}.xml

Pretty much any property
can be used, both
Anteater-specific
properties (e.g. the task's
description), Group
properties, and Ant
<property> properties.

The following properties
are predefined:

Property name Description Example

groupid Variable containing the 'group
identifier' in filesystem-friendly
form.

default,
My_Wonderful_Group

taskname Variable containing name of
currently running Task

httpRequest, Listener

url Variable containing a
filesystem-friendly rendition of
the request URL, minus the
request params.

http___www_bibleportalproject_com_cgi_xml_p8_php

lineno Variable containing line number
of task that generated this log
entry

23

vm-count Variable containing a counter
unique within this Java Virtual
Machine. Used to ensure
uniqueness for looping test
outputs.

1, 2, 3, ...

run Variable containing a counter
that ensures the current
filename will be unique within
its directory. Prevents multiple
runs of an Anteater script from
overwriting a single output file.

1, 2, 3, ...

fqcn Variable containing fully
qualified classname of current
task.

org.apache.anteater.test.HttpRequest

raw-url Variable containing unmodified http://foo.com/server?a=b

Auxiliary tasks

Page 6
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.



request URL.

raw-url-noparams Variable containing request
URL with request params
stripped.

http://foo.com/server

groupid-raw Variable containing the 'group
identifier' in unescaped form.

default, My Wonderful
Group

There is one quirk in the
format: variables of the
form
${prefix:variable}.
These are interpreted as
follows: if
${variable} is
defined, and has value
value, then
${prefix:variable}
is replaced with
'prefixvalue'. For
example,
${run_:run} becomes
'run_1', or ${run at
:date} becomes 'run at
10/3/03'. If variable
is undefined, the variable
is replaced with ''. This
hackery is primarily for
the 'run' variable, which
won't exist if
overwrite is true (see
below).

overwrite boolean Specifies whether to
overwrite log files from
previous Anteater runs.

By default, if an Anteater
script is run twice (two
JVM instances), the log
files of the second will
overwrite the first. By
setting overwrite to
false, log files will
have _runX appended to
their name, where X is
the next in the file

Auxiliary tasks

Page 7
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.



sequence.

todir String logs Specifies a directory in
which to create logs, if
any. The value must be a
directory relative to
Anteater's base directory.
Only relevant if
useFile is true.

extension String If logging to a file, sets
the file extension, e.g. if
the value is .xml, it
becomes the file
extension.

Note:
The rest of the
filename is
determined by the
logger, and will
generally be
chosen to be
unique within the
directory.

group String Add this logger to the
specified group.

Table 1: Attributes
Elements allowed inside logger: none

1.3. session

Declares an object which stores cookies, and transparently maintains state between multiple
action tasks.

The session object does what users have come to expect browsers to do; it caches cookies
sent from the server, and resends them on subsequent requests to that server. This is the
standard way in which state is maintained in HTTP-based client/server applications.

Usually, one would not need to use this tag, as the default group already defines a session.
This tag is useful when you don't want to use the default session for some reason. A session
can be shared among multiple action tasks by assigning it an id, and then using refid to

Auxiliary tasks

Page 8
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.



refer to it.

Note:
Currently, there is no way to undefine a session, other than to edit default.properties in the jar and turn the default session off.
Send a feature request if you need this fixed.

Attribute name Type Default value Description

id string Sets the session id, for
use later on with
<session
refid="..."/>

Table 1: Attributes
Elements allowed inside session: none

1.4. namespace

Specifies a mapping from XML namespace prefix to namespace URI. This mapping is used
in XML-aware testers like xpath

A namespace mapping is required so that when namespace-prefixed elements are used in
tasks like xpath, they correctly match equivalent elements in the HTTP response's XML,
regardless of their prefix. So if we got back <x:foo xmlns:x="some.uri"/>, and
tried to match it with <xpath select="/y:foo"/>, we'd need to a namespace
mapping with <namespace prefix="y" uri="some.uri"/>

Note:
This is really a hack; if Ant made namespaces available to tasks, one could instead use normal XML xmlns attributes to
declare namespace mappings.

If you didn't understand a word of this, and don't know what a namespace is, please see the
namespace FAQ.

Attribute name Type Default value Description

prefix string The namespace prefix.
This prefix cannot be
blank.

uri string The namespace URI to
associate with the prefix.

Auxiliary tasks

Page 9
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

http://sourceforge.net/tracker/?func=add&group_id=42970&atid=434735
http://sourceforge.net/tracker/?func=add&group_id=42970&atid=434735
http://sourceforge.net/tracker/?func=add&group_id=42970&atid=434735
http://sourceforge.net/tracker/?func=add&group_id=42970&atid=434735
Test tasks.html#elem:xpath
Test tasks.html#elem:xpath
http://www.rpbourret.com/xml/NamespacesFAQ.htm#q1_1
http://www.rpbourret.com/xml/NamespacesFAQ.htm#q1_1
http://www.rpbourret.com/xml/NamespacesFAQ.htm#q1_1


Table 1: Attributes
Elements allowed inside namespace: none

Examples

This example applies a bunch of XPath tests to a Cocoon-generated XML document
<httpRequest path="/nsxml.xml">
<!--
We can't use a blank namespace here. According to the jaxen javadocs:
"In XPath, there is no such thing as a 'default namespace'. The
empty prefix always resolves to the empty namespace"
-->
<namespace prefix="x" uri="http://xml.apache.org/cocoon/requestgenerator/2.0"/>
<match>
<xpath select="/"/>
<xpath select="/x:request"/>
<xpath select="/x:request/x:requestHeaders" assign="h"/>
<xpath select="/x:request/x:requestHeaders/x:header[@name='host']"/>
<xpath select="/x:request/x:requestHeaders/x:header[@name='host']/text()"/>

</match>
</httpRequest>

1.5. uses

Specifies what Anteater features the script (or a group) needs to run. A Feature is either some
aspect of Anteater itself (notably the version), or an optional feature.

Since the advent of the Update System, an Anteater install can have 'updates' applied to it, to
give it extra capabilities. Scripts that rely on extra capabilities (extra schemas, for example)
will break on Anteater installations lacking those updates. The <uses> tag lets such a script
declare it's dependence on an optional feature.

The <uses> tag is scoped by the group it belongs to. By declaring it in the 'default' group, it
applies to the whole script. <uses> tags are cumulatively inherited from parent groups, and
only 'evaluated' when a task in the group is executed. Outside a group, a <uses> tag is
meaningless, so they should always be found either inside a group tag, or have a 'group'
attribute.

Attribute name Type Default value Description

version dotted decimal (x.y.z) (Any anteater
version)

This optional attribute
specifies the Anteater
version the script is
known to work with. The
format is a series of
decimals separated by
dots, most significant
first, eg '0.9.14'.

Auxiliary tasks

Page 10
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

updates.html
updates.html
updates.html
Auxiliary tasks.html#elem:group


Setting a version does not
imply that the script is
limited to running on the
specified version (the tag
is 'uses', not 'requires').
The version attribute
merely provides
information to Anteater,
allowing future versions
to maintain better
backwards-compatibility
(eg, by applying an
XSLT at runtime to make
a script comply with a
later format).

group string Specifies the group that
this 'uses' applies to. The
same thing can be
achieved by nesting the
'uses' tag inside a group
element.

The specified group must
exist. If 'default', the
requirements apply to the
whole script.

Table 1: Attributes
Element name Description

feature Specifies an optional Anteater 'upgrade' that tasks in
the current group require to run.

Table 2: Elements allowed inside uses
Examples

Here is an example which applies to the whole script (default group), specifying the Anteater
version known to work (0.9.14), and a requirement on the 'xhtml-schema' upgrade.

...
<group id="default">
<uses version="0.9.14">
<feature name="xhtml-schema"/>

</uses>
</group>

Auxiliary tasks

Page 11
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

Auxiliary tasks.html#elem:group
Auxiliary tasks.html#elem:feature


Then later, the script could safely rely on the optional schema:

<httpRequest>
<match>
<relaxng rngFile="${anteater.resources}/schemas/rng/xhtml/xhtml.rng"/>

</match>
</httpRequest>

Here is a hierarchy of groups to demonstrate how requirements are accumulated.

<group id="default">
<uses version="0.9.14"/> <!-- Known to run with 0.9.14 -->
<group id="xhtml-tests">
<uses>
<feature name="xhtml-schema"/>

</uses>
<group id="xhtml+mathml-tests">
<uses>
<feature
name="mathml-schema"/>

</uses>
</group>

</group>
</group>

Tasks in group 'xhtml-tests' will fail unless 'xhtml-schema' is installed, and tasks in group
'xhtml+mathml-tests' will fail unless both 'xhtml-schema' and 'mathml-schema' are installed.

1.6. feature

This tag is nested inside the uses tag. It specifies an Anteater feature that must be present,
typically installed via the Update System

Attribute name Type Default value Description

name string Specifies the name of the
required Anteater feature,
eg 'jelly', or
'xhtml-schema'.

Table 1: Attributes

1.7. checkuses

The checkuses task will accumulate the features specified by all uses elements in the task's
group, and check if the current Anteater installation can provide them.

Auxiliary tasks

Page 12
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

Auxiliary tasks.html#elem:uses
updates.html
updates.html
Auxiliary tasks.html#elem:uses


This check is performed on every action task that contains (or whose group contains) a uses
tag, but occasionally one may want to perform this check explicitly, which is what
'checkuses' is for. It takes no nested elements or attributes other than 'group'.

Attribute name Type Default value Description

group string default Specifies the group
whose requirements we
are to check. Like all
tasks, by default this
belongs to the 'default'
group.

Table 1: Attributes
Examples

Here is how we could rely on the 'jelly' upgrade to check if we can use the jelly task
"natively".

<uses group="default" version="0.9.13">
<feature name="jelly"/>

</uses>

<target name="jelly">
<checkuses/>
<taskdef name="jelly"
classname="org.apache.commons.jelly.task.JellyTask"/>

<jelly script="resources/jelly/hello_world.jelly"/>
<echo>title is '${title}'</echo>

</target>

As no 'group' is specified, 'default' is assumed. Without the <checkuses> element, the target
would die with an error, as the specified class is not in Anteater by default.

Auxiliary tasks

Page 13
Copyright © 2001-2003 Ovidiu Predescu and Jeff Turner All rights reserved.

Auxiliary tasks.html#elem:uses
Auxiliary tasks.html#elem:uses
External tasks.html#elem:jelly

	Auxiliary tasks
	1 Auxiliary tasks
	1.1 group
	1.2 logger
	1.3 session
	1.4 namespace
	1.5 uses
	1.6 feature
	1.7 checkuses



